Advertisement

Modeling of Long-Period Ground Motions in the Nankai Subduction Zone: Model Simulation Using the Accretionary Prism Derived from Oceanfloor Local S-Wave Velocity Structures

  • Shunsuke Takemura
  • Hisahiko Kubo
  • Takashi Tonegawa
  • Tatsuhiko Saito
  • Katsuhiko Shiomi
Article

Abstract

The accretionary prism in the subduction zone, which consists of thick low-velocity oceanic sediments, significantly affects the propagation of seismic waves for shallow, offshore earthquakes, including large interplate earthquakes. In order to simulate long-period (> 5 s) ground motions in the Nankai subduction zone, we constructed a three-dimensional (3D) seismic velocity structure model of the accretionary prism by interpolation/extrapolation of local S-wave velocity structures beneath 46 oceanfloor seismic stations (DONET), which are deployed just above the accretionary prism off the southern Kii and eastern Shikoku regions. We modeled local S-wave velocity structures using a simple two-parameter depth-varying velocity function. To investigate the effects of the accretionary prism on ground and seafloor motions, we conducted numerical simulations of seismic wave propagation for three local earthquakes that occurred in southwestern Japan. The simulations reasonably reproduced the observed seismograms, not only for the period ranges of the moment tensor inversion (~ 50 s), but also for the strong, long-period ground motions in the sedimentary basins (~ 5 s), especially in the region where DONET stations are densely deployed. Since depth-varying, local S-wave structures significantly improve the reproducibility of long-period ground motions, our modeling procedure is useful for modeling long-period ground motions of local and regional offshore subduction zone earthquakes.

Keywords

Long-period ground motion Surface wave accretionary prism Nankai subduction zone finite-difference method simulation 

Notes

Acknowledgements

F-net, Hi-net, and DONET waveform data and F-net MT solutions are available via the website of the National Research Institute for Earth Science and Disaster Resilience, Japan (http://www.hinet.bosai.go.jp/). The frequency response of the short-period Hi-net sensors with a natural frequency of 1 Hz was corrected using the program of Maeda et al. (2011) via Dr. Maeda’s GitHub page (https://github.com/takuto-maeda/hinet_decon/releases). Bathymetric data were obtained from ETOPO1 (Amante and Eakins 2009). Generic Mapping Tools (Wessel et al. 2013) and Seismic Analysis Code (SAC; Hellfrich et al. 2013) were used to create figures and conduct signal processing, respectively. The FDM simulations of seismic wave propagation were conducted on the Earth Simulator of the Japan Agency for Marine-Earth Science and Technology. This study was supported by the Tokyo Marine Kagami Memorial Foundation, a Grant-in-Aid for Seismology, the Grants-in-Aid program of the Japan Society for the Promotion of Science (#17K14382), and by a collaborative research program of the Earthquake Research Institute, the University of Tokyo (#2015-B-01). We also thank two anonymous reviewers and the Editor Dr. B. Edwards for careful reviewing and constructive comments, which have helped improve the manuscript.

Supplementary material

24_2018_2013_MOESM1_ESM.docx (9.6 mb)
Supplementary material 1 (DOCX 9815 kb)
24_2018_2013_MOESM2_ESM.mp4 (13.1 mb)
Supplementary material 2 (MP4 13404 kb)
24_2018_2013_MOESM3_ESM.mp4 (10.4 mb)
Supplementary material 3 (MP4 10631 kb)

References

  1. Amante, C., & Eakins, B. W. (2009). ETOPO1 Arc-minute global relief model: Procedure, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder, Colorado, USA, p. 19.  https://doi.org/10.7289/v5c8276m.
  2. Ando, M. (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27(2), 119–140.  https://doi.org/10.1016/0040-1951(75)90102-X.CrossRefGoogle Scholar
  3. Archuleta, R., & Ji, C. (2016). Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop. Geophysical Research Letters, 43, 12004–12011.  https://doi.org/10.1002/2016GL071433.CrossRefGoogle Scholar
  4. Arroyo, I. G., Husen, S., Flueh, E. R., Gossler, J., Kissling, E., & Alvarado, G. E. (2009). Three-dimensional P-wave velocity structure on the shallow part of the central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophysical Journal International, 179, 827–849.  https://doi.org/10.1111/j.1365-246X.2009.04342.x.CrossRefGoogle Scholar
  5. Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68, 147.  https://doi.org/10.1186/s40623-016-0519-9.CrossRefGoogle Scholar
  6. Bozdağ, E., Trampert, J., & Tromp, J. (2011). Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185, 845–870.  https://doi.org/10.1111/j.1365-246X.2011.04970.x.CrossRefGoogle Scholar
  7. Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95, 2081–2092.  https://doi.org/10.1785/0120050077.CrossRefGoogle Scholar
  8. Brocher, T. M. (2008). Key elements of regional seismic velocity models for long period ground motion simulations. Journal of Seismology, 12, 217–221.  https://doi.org/10.1007/s10950-007-9061-3.CrossRefGoogle Scholar
  9. Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M. (1985). A non-reflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50, 705–708.CrossRefGoogle Scholar
  10. Dhakal, Y. P., Aoi, S., Kunugi, T., Suzuki, W., & Kimura, T. (2017). Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: A study at the Sagami Bay area K-NET sites in Japan. Earth, Planets and Space, 69, 29.  https://doi.org/10.1186/s40623-017-0615-5.CrossRefGoogle Scholar
  11. Fukuyama, E., Ishida, M., Dreger, D. S., & Kawai, H. (1998). Automated seismic moment tensor determination by using on-line broadband seismic waveforms. Zisin, 51, 149–156.  https://doi.org/10.4294/zisin1948.51.1_149. (in Japanese with English abstract).CrossRefGoogle Scholar
  12. Furumura, T., & Chen, L. (2004). Large scale parallel simulation and visualization of 3D seismic wavefield using Earth simulator. Computer Modeling in Engineering and Sciences, 6, 153–168.  https://doi.org/10.3970/cmes.2004.006.153.CrossRefGoogle Scholar
  13. Furumura, T., Hayakawa, T., Nakamura, M., Koketsu, K., & Baba, T. (2008). Development of long-period ground motions from the Nankai Trough, Japan, earthquake: Observations and computer simulation of the 1944 Tonankai (M w 8.1) and the 2004 SE Off-Kii Peninsula (M w 7.4) earthquakes. Pure and Applied Geophysics, 165, 585–607.  https://doi.org/10.1007/s00024-008-0318-8.CrossRefGoogle Scholar
  14. Furumura, T., Imai, K., & Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu. Japan. Journal of Geophysical Research, 116, B02308.  https://doi.org/10.1029/2010JB007918.CrossRefGoogle Scholar
  15. Furumura, T., & Kennett, B. L. N. (2017). Unusual strong ground motion across Japan from the 680 km deep 30 May 2015 Ogasawara Islands earthquake. Journal of Geophysical Research.  https://doi.org/10.1002/2017jb014519.CrossRefGoogle Scholar
  16. Furumura, T., & Nakamura, M. (2006). Recovering of strong motion record of the 1944 Tonankai earthquake and long period ground motion in Kanto region. Geophysical Exploration, 59, 337–351. (in Japanese with English abstract).Google Scholar
  17. Furumura, T., & Singh, S. K. (2002). Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interpolate and inslab events. Bulletin of the Seismological Society of America, 92, 2110–2125.CrossRefGoogle Scholar
  18. Guo, Y., Koketsu, K., & Miyake, H. (2016). Propagation mechanism of long-period ground motions for offshore earthquakes along the Nankai Trough: Effects of accretionary wedge. Bulletin of the Seismological Society of America, 106, 1176–1197.  https://doi.org/10.1785/0120150315.CrossRefGoogle Scholar
  19. Hallo, M., Asano, K., & Gallovič, F. (2017). Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan. Earth, Planets and Space, 69, 134.  https://doi.org/10.1186/s40623-017-0721-4.CrossRefGoogle Scholar
  20. Hellfrich, G., Wookey, J., & Bastow, I. (2013). The seismic analysis code: A primer and users guide. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  21. Hok, S., Fukuyama, E., & Hashimoto, C. (2011). Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan. Journal of Geophysical Research, 116, B12319.  https://doi.org/10.1029/2011JB008492.CrossRefGoogle Scholar
  22. Ito, Y., & Obara, K. (2006a). Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophysical Research Letters, 33, L02311.  https://doi.org/10.1029/2005GL025270.CrossRefGoogle Scholar
  23. Ito, Y., & Obara, K. (2006b). Very low-frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. Geophysical Research Letters, 33, L09302.  https://doi.org/10.1029/2006GL025883.CrossRefGoogle Scholar
  24. Iwaki, A., Morikawa, N., Maeda, T., Aoi, S., & Fujiwara, H. (2013). Finite-difference simulation of long-period ground motion for the Sagami trough megathrust earthquakes. Journal of Disaster Research, 8, 926–940.CrossRefGoogle Scholar
  25. Ji, C., Helmberger, D. V., Wald, D. J., & Ma, K. F. (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 108, 2412.  https://doi.org/10.1029/2002JB001764.CrossRefGoogle Scholar
  26. Kamei, R., Pratt, R. G., & Tsuji, T. (2012). Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth and Planetary Science Letters, 317, 343–353.  https://doi.org/10.1016/j.epsl.2011.10.042.CrossRefGoogle Scholar
  27. Kanamori, H., & Brodsky, E. (2004). The physics of earthquake. Reports on Progress in Physics, 67, 1429–1496.CrossRefGoogle Scholar
  28. Kaneda, Y., Kawaguchi, K., Araki, E., Matsumoto, H., Nakamura, T., Kamiya, S., et al. (2015). Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. In P. Favali, et al. (Eds.), Seafloor observatories (pp. 643–662). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-11374-1_25.CrossRefGoogle Scholar
  29. Kawaguchi, K., Kaneko, S., Nishida, T., & Komine, T. (2015). Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring. In P. Favali, et al. (Eds.), Seafloor observatories (pp. 211–228). Berlin, Heidelberg: Springer Praxis Books.  https://doi.org/10.1007/978-3-642-11374-1_10.CrossRefGoogle Scholar
  30. Kikuchi, M., Nakamura, M., & Yoshikawa, K. (2003). Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets and Space, 55, BF03351745.  https://doi.org/10.1186/bf03351745.CrossRefGoogle Scholar
  31. Kim, S., Saito, T., Fukuyama, E., & Kang, T. S. (2016). The Nankai Trough earthquake tsunamis in Korea: Numerical studies of the 1707 Hoei earthquake and physics-based scenarios. Earth, Planets and Space, 68, 64.  https://doi.org/10.1186/s40623-016-0438-9.CrossRefGoogle Scholar
  32. Kimura, T., Murakami, H., & Matsumoto, T. (2015). Systematic monitoring of instrumentation health in high-density broadband seismic networks. Earth, Planets and Space, 67, 55.  https://doi.org/10.1186/s40623-015-0226-y.CrossRefGoogle Scholar
  33. Koketsu, K., & Miyake, H. (2008). A seismological overview of long-period ground motion. Journal of Seismology, 12, 133–143.  https://doi.org/10.1007/s10950-007-9080-0.CrossRefGoogle Scholar
  34. Koketsu, K., Miyake, H., Fujiwara, H. & Hashimoto, T. (2008). Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map. In Proceedings of the 14th world conference on earthquake engineering, Beijing China, 12–17 October.Google Scholar
  35. Koketsu, K., Miyake, H. & Suzuki, H. (2012). Japan integrated velocity structure model version 1. In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September.Google Scholar
  36. Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., et al. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310(3), 480–487.  https://doi.org/10.1016/j.epsl.2011.09.009.CrossRefGoogle Scholar
  37. Kristek, J., Moczo, P., & Archuleta, R. (2002). Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes. Studia Geophysica et Geodaetica, 46(2), 355–381.CrossRefGoogle Scholar
  38. Kubo, A., Fukuyama, E., Kawai, H., & Nonomura, K. (2002). NIED seismic moment tensor catalogue for regional earthquakes around Japan: Quality test and application. Tectonophysics, 356, 23–48.  https://doi.org/10.1016/S0040-1951(02)00375-X.CrossRefGoogle Scholar
  39. Kubo, H., Nakamura, T., Suzuki, W., Dhakal, Y. P., Kimura, T., Kunugi, T., Takahashi, N. & Aoi, S. (2018b). Ground-motion characteristics and nonlinear soil response observed by DONET1 seafloor observation network during the 2016 southeast off Mie, Japan, earthquake (under review).Google Scholar
  40. Kubo, H., Nakamura, T., Suzuki, W., Kimura, T., Kunugi, T., Takahashi, N., et al. (2018a). Site amplification characteristics at Nankai seafloor observation network DONET1, Japan, evaluated using spectral inversion. Bulletin of the Seismological Society of America, 108, 1210–1218.  https://doi.org/10.1785/0120170254.CrossRefGoogle Scholar
  41. Kubo, H., Suzuki, W., Aoi, S., & Sekiguchi, H. (2017). Source rupture process of the 2016 central Tottori, Japan, earthquake (M JMA 6.6) inferred from strong motion waveforms. Earth, Planets and Space, 69, 127.  https://doi.org/10.1186/s40623-017-0714-3.CrossRefGoogle Scholar
  42. Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S., Shinohara, M., et al. (2013). Seismic- and tsunami-wave propagation of the 2011 off the Pacific coast of Tohoku earthquake as inferred from the tsunami-coupled finite-difference simulation. Bulletin of the Seismological Society of America, 103, 1456–1472.  https://doi.org/10.1785/0120120118.CrossRefGoogle Scholar
  43. Maeda, T., Iwaki, A., Morikawa, N., Aoi, S., & Fujiwara, H. (2016a). Seismic-hazard analysis of long-period ground motion of megathrust earthquakes in the Nankai trough based on 3D finite-difference simulation. Seismological Research Letters, 87, 1265–1273.  https://doi.org/10.1785/0220160093.CrossRefGoogle Scholar
  44. Maeda, T., Nishida, K., Takagi, R., & Obara, K. (2016b). Reconstruction of a 2D seismic wavefield by seismic gradiometry. Progress in Earth and Planetary Science, 3, 31.  https://doi.org/10.1186/s40645-016-0107-4.CrossRefGoogle Scholar
  45. Maeda, T., Obara, K., Furumura, T., & Saito, T. (2011). Interference of long-period seismic wavefield observed by the dense Hi-net array in Japan. Journal of Geophysical Research, 116, B10303.  https://doi.org/10.1029/2011JB008464.CrossRefGoogle Scholar
  46. Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space, 69, 102.  https://doi.org/10.1186/s40623-017-0687-2.CrossRefGoogle Scholar
  47. Miyake, H., & Koketsu, K. (2005). Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan. Earth, Planets and Space, 57, 203–207.  https://doi.org/10.1186/BF03351816.CrossRefGoogle Scholar
  48. Nakamura, T., Takenaka, H., Okamoto, T., Ohori, M., & Tsuboi, S. (2015). Long-period ocean-bottom motions in the source areas of large subduction earthquakes. Scientific Reports, 5, 16648.  https://doi.org/10.1038/srep16648.CrossRefGoogle Scholar
  49. Nakano, M., Nakamura, T., & Kaneda, Y. (2015). Hypocenters in the Nankai Trough determined by using data from both ocean-bottom and land seismic networks and a 3D velocity structure model: Implications for seismotectonic activity. Bulletin of the Seismological Society of America, 105(3), 1594–1605.  https://doi.org/10.1785/0120140309.CrossRefGoogle Scholar
  50. Nishida, K., Kawakatsu, H., & Obara, K. (2008). Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. Journal of Geophysical Research, 113, B10302.  https://doi.org/10.1029/2007JB005395.CrossRefGoogle Scholar
  51. Noguchi, S., Maeda, T., & Furumura, T. (2016). Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion. Geophysical Journal International, 205, 1099–1107.  https://doi.org/10.1093/gji/ggw074.CrossRefGoogle Scholar
  52. Nolet, G., & Dorman, L. M. (1996). Waveform analysis of Scholte modes in ocean sediment layers. Geophysical Journal International, 125, 385–396.  https://doi.org/10.1111/j.1365-246X.1996.tb00006.x.CrossRefGoogle Scholar
  53. Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353, 253–257.  https://doi.org/10.1126/science.aaf1512.CrossRefGoogle Scholar
  54. Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., et al. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56(8), BF03353076.  https://doi.org/10.1186/bf03353076.CrossRefGoogle Scholar
  55. Okamoto, T. (2002). Full waveform moment tensor inversion by reciprocal finite difference Green’s function. Earth, Planets and Space, 54, 715–720.  https://doi.org/10.1186/BF03351723.CrossRefGoogle Scholar
  56. Okamoto, T., Takenaka, H., Nakamura, T., & Hara, T. (2017). FDM simulation of earthquakes off western Kyushu, Japan, using a land–ocean unified 3D structure model. Earth, Planets and Space, 69, 88.  https://doi.org/10.1186/s40623-017-0672-9.CrossRefGoogle Scholar
  57. Park, J. O., Tsuru, T., Kodaira, S., Cummins, P. R., & Kaneda, Y. (2002). Splay fault branching along the Nankai subduction zone. Science, 297, 1157–1160.  https://doi.org/10.1126/science.1074111.CrossRefGoogle Scholar
  58. Petukhin, A., Miyakoshi, K., Tsurugi, M., Kawase, H., & Kamae, K. (2016). Visualization of Green’s function anomalies for megathrust source in Nankai trough by reciprocity method. Earth, Planets and Space, 68, 4.  https://doi.org/10.1186/s40623-016-0385-5.CrossRefGoogle Scholar
  59. Ravve, I., & Koren, Z. (2006). Exponential asymptotically bounded velocity model: Part I—Effective models and velocity transformations. Geophysics, 71, T53–T65.  https://doi.org/10.1190/1.2196033.CrossRefGoogle Scholar
  60. Robertsson, J., Blanch, J. O., & Symes, W. W. (1994). Viscoelastic finite-difference modeling. Geophysics, 59, 1444–1456.  https://doi.org/10.1190/1.1443701.CrossRefGoogle Scholar
  61. Ruan, Y., Forsyth, D. W., & Bell, W. (2014). Marine sediment shear velocity structure from the ratio of displacement to pressure of Rayleigh waves at seafloor. Journal of Geophysical Research, 119, 6357–6371.  https://doi.org/10.1002/2014JB011162.CrossRefGoogle Scholar
  62. Saito, T. (2017). Tsunami generation: Validity and limitations of conventional theories. Geophysical Journal International, 210, 1888–1900.  https://doi.org/10.1093/gji/ggx275.CrossRefGoogle Scholar
  63. Saito, T., & Tsushima, H. (2016). Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring system. Journal of Geophysical Research, 121, 8175–8195.  https://doi.org/10.1002/2016JB013195.CrossRefGoogle Scholar
  64. Shapiro, N., Campillo, M., Singh, S. K., & Pacheco, J. (1998). Seismic channel waves in the accretionary prism of the Middle America Trench. Geophysical Research Letters, 25, 101–104.CrossRefGoogle Scholar
  65. Shapiro, N. M., Olsen, K. B., & Singh Shri, K. (2002). On the duration of seismic motion incident onto the Valley of Mexico for subduction zone earthquake. Geophysical Journal International, 151, 501–510.  https://doi.org/10.1046/j.1365-246X.2002.01789.x.CrossRefGoogle Scholar
  66. Shinohara, M., Fukano, T., Kanazawa, T., Araki, R., Suehiro, K., Mochizuki, M., et al. (2008). Upper mantle and crustal seismic structure beneath the Northwestern Pacific Basin using a seafloor borehole broadband seismometer and ocean bottom seismometers. Physics of the Earth and Planetary Interior, 170, 95–106.  https://doi.org/10.1016/j.pepi.2008.07.039.CrossRefGoogle Scholar
  67. Storchak, D. A., Giacomo, D. D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., et al. (2013). Public release of the ISC-GEM global instrumental earthquake catalogue. Seismological Research Letters, 84(5), 810–815.  https://doi.org/10.1785/0220130034.CrossRefGoogle Scholar
  68. Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., et al. (2012). Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience, 5, 414–418.  https://doi.org/10.1038/ngeo1466.CrossRefGoogle Scholar
  69. Takemura, S., Akatsu, M., Masuda, K., Kajikawa, K., & Yoshimoto, K. (2015a). Long-period ground motions in a laterally inhomogeneous large sedimentary basin: Observations and model simulations of long-period surface waves in the northern Kanto Basin, Japan. Earth, Planets and Space, 67, 33.  https://doi.org/10.1186/s40623-015-0201-7.CrossRefGoogle Scholar
  70. Takemura, S., Furumura, T., & Maeda, T. (2015b). Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity. Geophysical Journal International, 201(1), 459–474.  https://doi.org/10.1093/gji/ggv038.CrossRefGoogle Scholar
  71. Takemura, S., Kimura, T., Saito, T., Kubo, H., & Shiomi, K. (2018). Moment tensor inversion of the 2016 southwest offshore Mie earthquake occurred in the Tonankai region using a three-dimensional velocity structure model: Effects of the accretionary prism and subducting oceanic plate. Earth, Planets and Space, 70, 50.  https://doi.org/10.1186/s40623-018-0819-3.CrossRefGoogle Scholar
  72. Takemura, S., Kobayashi, M., & Yoshimoto, K. (2017a). High-frequency seismic wave propagation within the heterogeneous crust: Effects of seismic scattering and intrinsic attenuation on ground motion modelling. Geophysical Journal International, 210, 1806–1822.  https://doi.org/10.1093/gji/ggx269.CrossRefGoogle Scholar
  73. Takemura, S., Saito, T., & Shiomi, K. (2017b). Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net. Earth, Planets and Space, 69, 38.  https://doi.org/10.1186/s40623-017-0625-3.CrossRefGoogle Scholar
  74. Takemura, S., Shiomi, K., Kimura, T., & Saito, T. (2016). Systematic difference between first-motion and waveform-inversion solutions for shallow offshore earthquakes due to a low-angle dipping slab. Earth, Planets and Space, 68, 149.  https://doi.org/10.1186/s40623-016-0527-9.CrossRefGoogle Scholar
  75. Takemura, S., Yoshimoto, K., & Tonegawa, T. (2015c). Velocity increase in the uppermost oceanic crust of the Philippine Sea plate beneath the Kanto region due to dehydration inferred from high-frequency trapped P waves. Earth, Planets and Space, 67, 41.  https://doi.org/10.1186/s40623-015-0210-6.CrossRefGoogle Scholar
  76. Todoriki, M., Furumura, T., & Maeda, T. (2017). Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes. Geophysical Journal International, 208, 226–233.  https://doi.org/10.1093/gji/ggw388.CrossRefGoogle Scholar
  77. Tonegawa, T., Araki, E., Nakamura, T., Nakano, M., & Suzuki, K. (2017). Sporadic low-velocity volumes spatially correlate with shallow very low-frequency earthquake clusters. Nature Communications, 8, 2048.  https://doi.org/10.1038/s41467-017-02276-8.CrossRefGoogle Scholar
  78. Tonegawa, T., Fukao, Y., Takahashi, T., Obana, K., & Kodaira, S. (2015). Ambient seafloor noise excited by earthquakes in the Nankai subduction zone. Nature Communications, 6, 6132.  https://doi.org/10.1038/ncomms7132.CrossRefGoogle Scholar
  79. Volk, O., Shani-Kadmiel, S., Gvirtzman, Z., & Tsesarsky, M. (2017). 3D effects of sedimentary wedges and subsurface canyons: Ground-motion amplification in the Israeli coastal plain. Bulletin of the Seismological Society of America, 107(3), 1324–1335.  https://doi.org/10.1785/0120160349.CrossRefGoogle Scholar
  80. Wessel, P., Smith, W. H. F., Scharoo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. EOS, Transactions of American Geophysical Union, 94(45), 409–410.  https://doi.org/10.1002/2013EO450001.CrossRefGoogle Scholar
  81. Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534, 374–377.  https://doi.org/10.1038/nature17632.CrossRefGoogle Scholar
  82. Yoshimoto, K., & Takemura, S. (2014a). Surface wave excitation at the northern edge of the Kanto Basin, Japan. Earth, Planets and Space, 66, 16.  https://doi.org/10.1186/1880-5981-66-16.CrossRefGoogle Scholar
  83. Yoshimoto, K., & Takemura, S. (2014b). A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planets and Space, 66, 100.  https://doi.org/10.1186/1880-5981-66-100.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Research Institute for Earth Science and Disaster ResilienceTsukubaJapan
  2. 2.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations