Advertisement

Reservoir Characterization Through Target-Oriented AVA-Petrophysical Inversions with Spatial Constraints

  • Mattia Aleardi
  • Fabio Ciabarri
  • Timur Gukov
Article
  • 10 Downloads

Abstract

We apply three methods that use different regularization strategies to insert spatial constraints into the seismic-petrophysical inversion. The first method is what we call the structurally constrained inversion (SCI), which directly uses the structural information brought by the seismic stack image to insert geological (structural) constraints into the inversion. The second method is based on anisotropic Markov random field (AMRF) and uses the Huber energy function to reasonably model the spatial heterogeneity of petrophysical reservoir properties. Finally, the last method includes both geostatistical information (describing the lateral variability of reservoir properties) and hard data (i.e. well log data) constraints into the inversion kernel (GHDC inversion). For computationally feasibility, we apply a target-oriented inversion that uses the amplitude versus angle (AVA) responses extracted along the top reservoir reflections to infer the petrophysical properties of interest (i.e. porosity, water saturation and shaliness) for the target layer. In particular, an empirical, linear rock-physics model, properly calibrated for the investigated area, is used to rewrite the P-wave reflectivity equation as a function of the petrophysical contrasts instead of the elastic constants. This reformulation allows for a direct and a simultaneous estimation of petrophysical properties from AVA data. The implemented approaches are tested both on synthetic and field seismic data and compared against the standard method in which each AVA response is inverted independently (laterally unconstrained Bayesian inversion; LUBI). In the case of poor signal-to-noise ratio it turns out that the three considered spatially constrained methods achieve better delineations of reservoir bodies and provide more reliable results than the standard LUBI approach. More in detail, the AMRF recovers sharper geological boundaries than the SCI and GHDC algorithms. The SCI algorithms is more sensitive to data noise, whereas the key advantage of the GHDC consists in analytically providing posterior uncertainties for the model parameters. Finally, for what concerns the computational cost the GHDC and the SCI methods result the most and the least computationally demanding, respectively.

Keywords

Exploration seismic seismic inversion reservoir characterization 

Notes

Acknowledgements

The authors wish to thank Edison for making the well log data and the seismic data available and for the permission to publish this paper. At the University of Pisa, the seismic data were processed with the Promax software of Landmark/Halliburton who is gratefully acknowledged.

References

  1. Aki, K., & Richards, P. G. (1980). Quantative seismology: Theory and methods (p. 801). New York: Wiley.Google Scholar
  2. Aleardi, M., & Ciabarri, F. (2017a). Application of different classification methods for litho-fluid facies prediction: A case study from offshore Nile Delta. Journal of Geophysics and Engineering, 14(5), 1087.CrossRefGoogle Scholar
  3. Aleardi, M., & Ciabarri, F. (2017b). Assessment of different approaches to rock-physics modeling: A case study from offshore Nile Delta. Geophysics, 82(1), 15–25.CrossRefGoogle Scholar
  4. Aleardi, M., Ciabarri, F., Garcea, B., Peruzzo, F., and Mazzotti, A. (2016a). Probabilistic seismic-petrophysical inversion applied for reservoir characterization in offshore Nile delta. In 78th EAGE Conference and Exhibition 2016.  https://doi.org/10.3997/2214-4609.201600969.
  5. Aleardi, M., Ciabarri, F., & Gukov, T. (2018). A two-step inversion approach for seismic-reservoir characterization and a comparison with a single-loop Markov-Chain Monte Carlo algorithm. Geophysics, 83(3), R227–R244.CrossRefGoogle Scholar
  6. Aleardi, M., Ciabarri, F., & Mazzotti, A. (2017). Probabilistic estimation of reservoir properties by means of wide-angle AVA inversion and a petrophysical reformulation of the Zoeppritz equations. Journal of Applied Geophysics, 147, 28–41.CrossRefGoogle Scholar
  7. Aleardi, M., Tognarelli, A., & Mazzotti, A. (2016b). Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion. Near Surface Geophysics, 14(5), 449–460.Google Scholar
  8. Alemie, W., & Sacchi, M. D. (2011). High-resolution three-term AVO inversion by means of a trivariate cauchy probability distribution. Geophysics, 76(3), R43–R55.CrossRefGoogle Scholar
  9. Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Bachrach, R., Beller, M., Liu, C. C., Perdomo, J., Shelander, D., Dutta, N., et al. (2004). Combining rock physics analysis, full waveform prestack inversion and high-resolution seismic interpretation to map lithology units in deep water: A Gulf of Mexico case study. The Leading Edge, 23(4), 378–383.CrossRefGoogle Scholar
  11. Bongajum, E. L., Boisvert, J., & Sacchi, M. D. (2013). Bayesian linearized seismic inversion with locally varying spatial anisotropy. Journal of Applied Geophysics, 88, 31–41.CrossRefGoogle Scholar
  12. Bosch, M., Mukerji, T., & Gonzalez, E. F. (2010). Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 75(5), 165–176.CrossRefGoogle Scholar
  13. Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68(1), 185–198.CrossRefGoogle Scholar
  14. Charbonnier, P., Blanc-Feraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298–311.CrossRefGoogle Scholar
  15. Chen, J. J., Yin, X. Y., & Zhang, G. Z. (2007). Simultaneous three-term AVO inversion based on Bayesian theorem. Journal of China University of Petroleum (Edition of Natural Science), 3, 006.Google Scholar
  16. Davis, T. A., & Hager, W. W. (2005). Row modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 26, 621–639.CrossRefGoogle Scholar
  17. Downton, J. E. (2005). Seismic parameter estimation from AVO inversion. Calgary: University of Calgary.Google Scholar
  18. Doyen, P. (2007). Seismic reservoir characterization. EAGE.Google Scholar
  19. Hamid, H., & Pidlisecky, A. (2015). Multitrace impedance inversion with lateral constraints. Geophysics, 80(6), M101–M111.CrossRefGoogle Scholar
  20. Lang, X., & Grana, D. (2017). Geostatistical inversion of prestack seismic data for the joint estimation of facies and impedances using stochastic sampling from Gaussian mixture posterior distributions. Geophysics, 82(4), M55–M65.CrossRefGoogle Scholar
  21. Rimstad, K., & Omre, H. (2010). Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75(4), R93–R108.CrossRefGoogle Scholar
  22. Rue, H., & Held, L. (2005). Gaussian Markov random fields, theory and applications (1st ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  23. Sajeva, A., Aleardi, M., Stucchi, E., Bienati, N., & Mazzotti, A. (2016). Estimation of acoustic macro models using a genetic full-waveform inversion: Applications to the Marmousi model. Geophysics, 81(4), R173–R184.CrossRefGoogle Scholar
  24. Sajeva, A., Aleardi, M., Stucchi, E., Mazzotti, A., and Galuzzi, B. (2014). Comparison of stochastic optimization methods on two analytic objective functions and on a 1D elastic FWI. In 76th Conference and Exhibition, EAGE, Extended Abstracts.  https://doi.org/10.3997/2214-4609.20140857.
  25. Scales, J. A., Gersztenkorn, A., & Treitel, S. (1988). Fast Ip solution of large, sparse, linear systems: Application to seismic travel time tomography. Journal of Computational Physics, 75(2), 314–333.CrossRefGoogle Scholar
  26. Sears, T. J., Singh, S. C., & Barton, P. J. (2008). Elastic full waveform inversion of multi-component OBC seismic data. Geophysical Prospecting, 56(6), 843–862.CrossRefGoogle Scholar
  27. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. New Delhi: Siam.CrossRefGoogle Scholar
  28. Tetyukhina, D., van Vliet, L. J., Luthi, S. M., & Wapenaar, K. (2010). High-resolution reservoir characterization by an acoustic impedance inversion of a Tertiary deltaic clinoform system in the North Sea. Geophysics, 75, O57–O67.CrossRefGoogle Scholar
  29. Theune, U., Jensås, I. Ø., & Eidsvik, J. (2010). Analysis of prior models for a blocky inversion of seismic AVA data. Geophysics, 75(3), C25–C35.CrossRefGoogle Scholar
  30. Ulvmoen, M., Omre, H., & Buland, A. (2010). Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 2-Real case study. Geophysics, 75(2), B73–B82.CrossRefGoogle Scholar
  31. Veire, H. H., Borgos, H. G., & Landrø, M. (2006). Stochastic inversion of pressure and saturation changes from time-lapse AVO data. Geophysics, 71(5), C81–C92.CrossRefGoogle Scholar
  32. Vigh, D., & Starr, E. W. (2008). 3D prestack plane-wave, full-waveform inversion. Geophysics, 73(5), VE135–VE144.CrossRefGoogle Scholar
  33. Wang, R., & Wang, Y. (2016). Multichannel algorithms for seismic reflectivity inversion. Journal of Geophysics and Engineering, 14(1), 41.CrossRefGoogle Scholar
  34. Zunino, A., Mosegaard, K., Lange, K., Melnikova, Y., & Mejer Hansen, T. (2015). Monte Carlo reservoir analysis combining seismic reflection data and informed priors. Geophysics, 80(1), R31–R41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Earth Sciences DepartmentUniversity of PisaPisaItaly
  2. 2.EdisonMilanoItaly

Personalised recommendations