Advertisement

Drought Assessment in the Sardinia Region (Italy) During 1922–2011 Using the Standardized Precipitation Index

  • T. Caloiero
  • S. Veltri
Article
  • 14 Downloads

Abstract

In this article, the Standardized Precipitation Index (SPI), at both the short- and long-time scale, has been evaluated to analyse drought in the Sardinia region (Italy). In fact, while the short-time scale SPI describes droughts that affect plant life and farming, the long-time scale SPI influences the way water supplies/reserves are managed. Initially, with the aim to detect the most important drought episodes that affected the region each month, the percentage of rain gauges showing severe or extreme drought values was evaluated. Then, in order to evaluate the temporal evolution of the SPI values, a trend analysis was performed. Results evidenced that, at the short-time scale, the observation period was characterized by several dry episodes while, at the long-time scale, the majority of the drought events were detected after 1980. Moreover, marked negative trends of the SPI values in winter, in the wet season and at the annual scale were detected.

Keywords

Drought SPI Trend Sardinia 

References

  1. Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications Inc.Google Scholar
  2. Angelidis, P., Maris, F., Kotsovinos, N., & Hrissanthou, V. (2012). Computation of drought index SPI with alternative distribution functions. Water Resources Management, 26, 2453–2473.CrossRefGoogle Scholar
  3. Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003). Spatial variability of drought: an analysis of SPI in Sicily. Water Resources Management, 17, 273–296.CrossRefGoogle Scholar
  4. Bordi, I., Fraedrich, K., & Sutera, A. (2009). Observed drought and wetness trends in Europe: an update. Hydrology and Earth System Sciences, 13, 1519–1530.CrossRefGoogle Scholar
  5. Brunetti, M., Caloiero, T., Coscarelli, R., Gullà, G., Nanni, T., & Simolo, C. (2012). Precipitation variability and change in the Calabria region (Italy) from a high resolution daily dataset. International Journal of Climatology, 32, 55–73.CrossRefGoogle Scholar
  6. Buttafuoco, G., & Caloiero, T. (2014). Drought events at different timescales in southern Italy (Calabria). Journal of Maps, 10, 529–537.CrossRefGoogle Scholar
  7. Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of drought events in Calabria (southern Italy) using standardized precipitation index. Water Resources Management, 29, 557–573.CrossRefGoogle Scholar
  8. Buttafuoco, G., Caloiero, T., Ricca, N., & Guagliardi, I. (2018). Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement, 113, 205–210.CrossRefGoogle Scholar
  9. Caloiero, T. (2017). Drought analysis in New Zealand using the standardized precipitation index. Environmental Earth Sciences, 76, 569.CrossRefGoogle Scholar
  10. Caloiero, T. (2018). SPI trend analysis of New Zealand applying the ITA technique. Geosciences, 8, 101.CrossRefGoogle Scholar
  11. Caloiero, T., Buttafuoco, G., Coscarelli, R., & Ferrari, E. (2014). Spatial and temporal characterization of climate at regional scale using homogeneous monthly precipitation and air temperature data: an application in Calabria (southern Italy). Hydrology Research, 46, 629–646.CrossRefGoogle Scholar
  12. Caloiero, T., Coscarelli, R., Ferrari, E., & Sirangelo, B. (2015). Analysis of dry spells in southern Italy (Calabria). Water, 7, 3009–3023.CrossRefGoogle Scholar
  13. Caloiero, T., Coscarelli, R., Ferrari, E., & Sirangelo, B. (2016). An analysis of the occurrence probabilities of wet and dry periods through a stochastic monthly rainfall model. Water, 8, 39.CrossRefGoogle Scholar
  14. Caloiero, T., Sirangelo, B., Ferrari, E., & Coscarelli, R. (2018). Occurrence probabilities of wet and dry periods in southern Italy through the SPI evaluated on synthetic monthly precipitation series. Water, 10, 336.CrossRefGoogle Scholar
  15. Cancelliere, A., Di Mauro, G., Bonaccorso, B., & Rossi, G. (2007). Drought forecasting using the standardised precipitation index. Water Resources Management, 21, 801–819.CrossRefGoogle Scholar
  16. Capra, A., Consoli, S., & Scicolone, B. (2013). Long-term climatic variability in Calabria and effects on drought and agrometeorological parameters. Water Resources Management, 27, 601–617.CrossRefGoogle Scholar
  17. Capra, A., & Scicolone, B. (2012). Spatiotemporal variability of drought on a short–medium time scale in the Calabria Region (southern Italy). Theoretical and Applied Climatology, 3, 471–488.CrossRefGoogle Scholar
  18. Delitala, A. M. S., Cesari, D., Chessa, P. A., & Neil-Ward, M. (2000). Precipitation over Sardinia (Italy) during the 1946–1993 rainy seasons and associated large-scale climate variations. International Journal of Climatology, 22, 519–541.CrossRefGoogle Scholar
  19. Di Lena, B., Vergni, L., Antenucci, F., Todisco, F., & Mannocchi, F. (2014). Analysis of drought in the region of Abruzzo (central Italy) by the standardized precipitation index. Theoretical and Applied Climatology, 115, 41–52.CrossRefGoogle Scholar
  20. Estrela, T., & Vargas, E. (2012). Drought management plans in the European Union. Water Resources Management, 26, 1537–1553.CrossRefGoogle Scholar
  21. Fang, K., Gou, X., Chen, F., Davi, N., & Liu, C. (2013). Spatiotemporal drought variability for central and eastern Asia over the past seven centuries derived from tree-ring based reconstructions. Quaternary International, 283, 107–116.CrossRefGoogle Scholar
  22. Feng, S., Hu, Q., & Oglesby, R. J. (2011). Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dynamics, 37, 569–586.CrossRefGoogle Scholar
  23. Fink, A. H., Brücher, T., Krüger, A., Leckebush, G. C., Pinto, J. G., & Ulbrich, U. (2004). The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts. Weather, 59, 209–216.CrossRefGoogle Scholar
  24. Golian, S., Mazdiyasni, O., & AghaKouchak, A. (2015). Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119, 679–688.CrossRefGoogle Scholar
  25. Guttman, N. B. (1999). Accepting the standardized precipitation index: Acalculating algorithm. Journal of the American Water Resources Association, 35, 311–323.CrossRefGoogle Scholar
  26. Hua, T., Wang, X. M., Zhang, C. X., & Lang, L. L. (2013). Temporal and spatial variations in the palmer drought severity index over the past four centuries in arid, semiarid, and semihumid east Asia. Chinese Science Bulletin, 58, 4143–4152.CrossRefGoogle Scholar
  27. IPCC. (2013). Summary for policymakers. Fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  28. Kendall, M. G. (1962). Rank correlation methods. New York: Hafner Publishing Company.Google Scholar
  29. Khan, S., Gabriel, H. F., & Rana, T. (2008). Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. Irrigation and Drainage Systems, 22, 159–177.CrossRefGoogle Scholar
  30. Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C., Apel, H., Aronica, G. T., et al. (2017). Adaptation to flood risk: results of international paired flood event studies. Earth’s Future, 5, 953–965.CrossRefGoogle Scholar
  31. Livada, I., & Assimakopoulos, V. D. (2007). Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology, 89, 143–153.CrossRefGoogle Scholar
  32. Lloyd-Huhes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology, 22, 1571–1592.CrossRefGoogle Scholar
  33. Logan, K. E., Brunsell, N. A., Jones, A. R., & Feddema, J. J. (2010). Assessing spatiotemporal variability of drought in the US central plains. Journal of Arid Environments, 74, 247–255.CrossRefGoogle Scholar
  34. Manatsa, D., Mukwada, G., Siziba, E., & Chinyanganya, T. (2010). Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology, 102, 287–305.CrossRefGoogle Scholar
  35. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  36. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scale. Preprints 8th conference on applied climatology (pp. 179–184). Anaheim: American Meteorological Society.Google Scholar
  37. Mehta, A. V., & Yang, S. (2008). Precipitation climatology over Mediterranean Basin from ten years of TRMM measurements. Advances in Geosciences, 17, 87–91.CrossRefGoogle Scholar
  38. Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology, 357, 282–302.CrossRefGoogle Scholar
  39. Minetti, J. L., Vargas, W. M., Poblete, A. G., de la Zerda, L. R., & Acuña, L. R. (2010). Regional droughts in southern South America. Theoretical and Applied Climatology, 102, 403–415.CrossRefGoogle Scholar
  40. Montaldo, N., & Sarigu, A. (2017). Potential links between the North Atlantic Oscillation and decreasing precipitation and runoff on a Mediterranean area. Journal of Hydrology, 553, 419–437.CrossRefGoogle Scholar
  41. Patel, N. R., & Yadav, K. (2015). Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Natural Hazards, 77, 663–677.CrossRefGoogle Scholar
  42. Raziei, T., Saghafian, B., Paulo, A. A., Pereira, L. S., & Bordi, I. (2009). Spatial patterns and temporal variability of drought in western Iran. Water Resources Management, 23, 439–455.CrossRefGoogle Scholar
  43. Reale, M., & Lionello, P. (2013). Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Natural Hazards and Earth System Sciences, 13, 1707–1722.CrossRefGoogle Scholar
  44. Sirangelo, B., Caloiero, T., Coscarelli, R., & Ferrari, E. (2015). A stochastic model for the analysis of the temporal change of dry spells. Stochastic Environmental Research and Risk Assessment, 29, 143–155.CrossRefGoogle Scholar
  45. Sirangelo, B., Caloiero, T., Coscarelli, R., & Ferrari, E. (2017). Stochastic analysis of long dry spells in Calabria (southern Italy). Theoretical and Applied Climatology, 127, 711–724.CrossRefGoogle Scholar
  46. Soldati, M., & Marchetti, M. (2017). Landscapes and landforms of Italy. Germany: Springer.CrossRefGoogle Scholar
  47. Sönmez, F. K., Kömüscü, A. Ü., Erkan, A., & Turgu, E. (2005). An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Natural Hazards, 35, 243–264.CrossRefGoogle Scholar
  48. Thom, H. C. S. (1958). A note on the gamma distribution. Monthly Weather Review, 86, 117–122.CrossRefGoogle Scholar
  49. Vergni, L., & Todisco, F. (2011). Spatio-temporal variability of precipitation temperature and agricultural drought indices in central Italy. Agricultural and Forest Meteorology, 151, 301–313.CrossRefGoogle Scholar
  50. Vicente-Serrano, S. M. (2006). Differences in spatial patterns of drought on different time sales. An analysis of the Iberian Peninsula. Water Resources Management, 20, 37–60.CrossRefGoogle Scholar
  51. Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect in the length of record in the standardized precipitation index calculation. International Journal of Climatology, 25, 505–520.CrossRefGoogle Scholar
  52. Zaidman, M. D., Rees, H. G., & Young, A. R. (2012). Spatio-temporal development of streamflow droughts in north-west Europe. Hydrology and Earth System Sciences, 5, 733–751.Google Scholar
  53. Zargar, A., Sadiq, R., Naser, B., & Han, F. I. (2011). A review of drought indices. Environmental Review, 19, 333–349.CrossRefGoogle Scholar
  54. Zhai, L., & Feng, Q. (2009). Spatial and temporal pattern of precipitation and drought in Gansu Province Northwest China. Natural Hazards, 49, 1.CrossRefGoogle Scholar
  55. Zhai, J., Su, B., Krysanova, V., Vetter, T., Gao, C., & Jiang, T. (2010). Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. Journal of Climate, 23, 649–663.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM)RendeItaly
  2. 2.PaolaItaly

Personalised recommendations