Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 1, pp 147–164 | Cite as

Local Site Effects During the Orkney Earthquake of 5 August 2014

  • T. Mulabisana
  • V. MidziEmail author
  • B. Manzunzu
Article
  • 47 Downloads

Abstract

Site response analysis is conducted at 37 seismic stations located in the Gauteng, North West and Free State provinces in South Africa, using the Nakamura H/V spectral ratio technique on records of the Orkney 5 August 2014 earthquake. The earthquake, of magnitude ML = 5.5, led to the unfortunate death of one person and damage of more than 600 houses. Intensity data collected soon after the event showed that the effects of the earthquake appeared to vary significantly across the region. This motivated the authors to conduct a more detailed investigation of the effects of site conditions on seismic station records in the region. Resonance frequency values obtained from the H/V ratios were observed to vary strongly across the region and also within seismic station clusters. Similar behaviour was observed with the peak amplitude of the ratios at the resonance frequency, except for the Johannesburg area whose results showed a relatively simple shape of the ratios implying less complex velocity structure. All the H/V ratios exhibit dominant peaks at resonant frequencies that varied between 0.5 and 35 Hz. The average observed resonant frequency was f = 7.9 Hz. The amplitude of the dominant peaks also varied strongly from 1.66 to 11.69, with only two sites exhibiting maximum peaks with amplitude smaller than 2. These results serve as a strong motivation or justification for the on-going microzonation studies in South Africa, where a detailed study of the velocity structure will be used to obtain reliable information on site amplification and resonance.

Keywords

Site response Orkney Nakamura South Africa H/V ratios resonance 

Notes

Acknowledgements

The authors are grateful to the Council for Geoscience for allowing them to make use of the data recorded by the national and cluster networks for the analysis as well as permission to spend time on this work.

References

  1. Aki, K. (1988). Local site effects on ground motion. Earthquake engineering and soil dynamics ii-recent advances in ground motion evaluation. Proc. of the A.S.C.E. Speciality Conference, Park City, Utah, June 27–30, pp. 103–155.Google Scholar
  2. Anhaeusser, C. R. (2006). Ultramafic and Mafic intrusions of the Kaapvaal Craton. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The geology of South Africa (pp. 95–134). Pretoria: Geological Society of South Africa, Johannesburg/Council for Geoscience, South Africa.Google Scholar
  3. Bard, P.Y. (1999). Micro tremor measurements: a tool for site effect estimation? Proceedings of the 2nd International Symposium on the Effect of Surface Geology on Seismic Motion, Yokohama, Japan, pp. 1251–1279.Google Scholar
  4. Birch, D.J., Mulabisana, T., Manzunzu, B., Pule, T., Zulu, B. & Myendeki, S. (2017). Investigating 1-D shear-wave velocity profiles using the MASW method in Johannesburg and KOSH. Council for Geoscience report number, 2017-0053.Google Scholar
  5. Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288–300.CrossRefGoogle Scholar
  6. Bouranta, E., Vallianatos, F., Hatzopoulos, J. N., Papadopoulos, I., & Gaganis, P. (2013). Microtremor HVSR study of site effects in the urban area of the Town of Mytilene, Lesvos (Greece)—preliminary results. Bulletin of the Geological Society of Greece, XLVII, 1081–1089.Google Scholar
  7. Brandl, G., Cloete, M., & Anhaeusser, C. R. (2006). Archaean greenstone belts. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The geology of South Africa (pp. 9–56). Pretoria: Geological Society of South Africa, Johannesburg/Council for Geoscience, South Africa.Google Scholar
  8. Brink, A. B. A. (1979). Engineering geology of Southern Africa- (Vol. 1). Pretoria: Building Publications.Google Scholar
  9. Chang, S. W., Bray, J. D., & Seed, R. B. (1996). Engineering implications of ground motions from the Northridge earthquake. Bulletin of the Seismological Society of America, 86(1B), S270–S288.Google Scholar
  10. Diop, S., Heath, L., Kekana, E., Mahandana, N., Mkhize, N., Motjale, P., Msane, B., Msomi, P., Mutshekwa, N., Ngoato, T., Nkosi, S., Nxumalo, N., Seanego, P., Sebeyi, T., Sebesho, M. & Zungu, N. (2015). Subsurface geotechnical evaluation of the city of Johannesburg in microzonation of Johannesburg. Council for Geoscience, Report number, 2015-0066.Google Scholar
  11. Diop, S, Heath, L., Malepe, M., Motjale, P., Mpanza, N., Msane, B., Radzilani, M., Rikhotso, J., Sebesho, M., Skhosana, B. & Zungu, N. (2016). Geotechnical assessment of the KOSH area for seismic microzonation. Council for Geoscience, Report number, 2016-0079.Google Scholar
  12. Eriksson, P. G., Altermann, W., & Hartzer, F. J. (2006). The transvaal supergroup and its precursors. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The Geology of South Africa (pp. 237–260). Pretoria: Geological Society of South Africa, Johannesburg/Council for Geoscience, South Africa.Google Scholar
  13. Fah, D., Ruttener, E., Noack, T., & Kruspan, P. (1997). Microzonation of the city of Basel. Journal of Seismology, 1, 87–102.CrossRefGoogle Scholar
  14. Field, E. H., & Jacob, K. (1993). The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters, 20(24), 2925–2928.CrossRefGoogle Scholar
  15. Finn, W. D. L., Ventura, C. E., & Schuster, N. D. (1995). Ground motions during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, 22, 200–315.CrossRefGoogle Scholar
  16. Horike, M., Zhao, B., & Kawase, H. (2001). Comparison of site response characteristics inferred from microtremors and earthquake shear wave. Bulletin of the Seismological Society of America, 91, 1526–1536.CrossRefGoogle Scholar
  17. Hough, S. E., Borcherdt, R. D., Friberg, P. A., Busby, R., Field, E. H., & Jacob, K. E. (1990). The role of sediment induced amplification in the collapse of the Nimitz freeway during October 17, 1989 Loma Prieta earthquake. Nature, 344, 853–855.CrossRefGoogle Scholar
  18. Hough, S. E., Martin, S., Bilham, R., & Atkinson, G. M. (2002). The 26 January 2001 M 7.6 Bhuj, India, Earthquake: observed and predicted ground motions. Bulletin of the Seismological Society of America, 92(6), 2016–20179.CrossRefGoogle Scholar
  19. Hunter, D. R., Johnson, M. R., Anhaeusser, C. R., & Thomas, R. J. (2006). Introduction. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The geology of South Africa (pp. 1–7). Pretoria: Geological Society of South Africa/Council for Geoscience, South Africa.Google Scholar
  20. Johnson, M. R., Van Vuuren, C. J., Visser, J. N. J., Cole, D. I., de Wickens, D., Christie, A. D. M., et al. (2006). Sedimentary rocks of the Karoo Supergroup. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The Geology of South Africa (pp. 461–500). Pretoria: Geological Society of South Africa/Council for Geoscience, South Africa.Google Scholar
  21. Kawase, H. (1996). The cause of the damage belt in Kobe: the basin-edge effect, constructive interference of the direct S-wave with the basin induced diffracted/Rayleigh waves. Seismological Research Letters, 67(5), 25–34.CrossRefGoogle Scholar
  22. King, J. L., & Tucker, B. E. (1984). Observed variations of earthquake motion across a sediment-filled valley. Bulletin of Seismological Society of America, 74, 153–165.Google Scholar
  23. Lachet, C., Hazfield, D., Bard, P. Y., Theodulidis, N., Papaioannou, C., & Savvaidis, A. (1996). Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bulletin of the Seismological Society of America, 86, 1692–1703.Google Scholar
  24. Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation? Bulletin of the Seismological Society of America, 84, 1350–1364.Google Scholar
  25. Midzi, V., Zulu, B. S., Manzunzu, B., Mulabisana, T., Pule, T., Myendeki, S., et al. (2015). Macroseismic survey of the ML5.5, 2014 Orkney earthquake. Journal of Seismology, 19, 741–751.CrossRefGoogle Scholar
  26. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. RTRI Quarterly Report Number, 30(1), 25–33.Google Scholar
  27. Nakamura, Y. (2008). On the H/V spectrum. The 14th World Conference on Earthquake Engineering, Beijing, China.Google Scholar
  28. Nath, S. K., Biswas, N. N., Dravinski, M., & Papageorgiou, A. (2002a). Determination of S-wave site response in anchor-age, Alaska in the 1–9 Hz frequency band. Pure and Applied Geophysics, 159, 2673–2698.CrossRefGoogle Scholar
  29. Nath, S. K., Sengupta, P., & Kayal, J. R. (2002b). Determination of site response at Garhwal Himalaya from the aftershock sequence of 1999 Chamoli earthquake. Bulletin of the Seismological Society of America, 92, 1071–1081.CrossRefGoogle Scholar
  30. Nath, S. K., Sengupta, P., Sengupta, S., & Chakrabarti, A. (2000). Site response estimation using strong motion network: A step towards microzonation of Sikkim Himalayas. Current Science: Special Session, Seismology, 2000(79), 1316–1326.Google Scholar
  31. Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor – Part 2. Journal of the Seismological Society of Japan, 24, 26–40.Google Scholar
  32. Ohmachi, T., Nakamura, Y., & Toshinawa, T. (1991). Ground motion characteristics in the San Francisco Bay area detected by microtremor measurements. In S. Prakash (Ed.), Proceedings of the second international conference on recent advances in geotechnical earthquake engineering and soil dynamics (pp. 1643–1648). St. Louis: University of Missouri.Google Scholar
  33. Rathod, G.W. (2018a). Seismic ground response analysis and estimation of the seismic wave amplification for Johannesburg region. Council for Geoscience, Report number, 2018-0232.Google Scholar
  34. Rathod, G.W. (2018b). Seismic ground response analysis and estimation of the seismic wave amplification for KOSH region. Council for Geoscience, Report number, 2018-0233.Google Scholar
  35. Robb, L. L., Brandl, G., Anhaeusser, C. R., & Poujol, M. (2006). Archaean granitoid intrusions. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The Geology of South Africa (pp. 57–94). Pretoria: Geological Society of South Africa, Johannesburg/Council for Geoscience, South Africa.Google Scholar
  36. Singh, S. K., Lermo, J., Dominguez, T., Ordaz, M., Espinosa, J. M., Mena, E., et al. (1988). The Mexico earthquake of September 19, 1985—a study of seismic waves in the Valley of Mexico with respect to a hill zone site. Earthquake Spectra, 4, 653–673.CrossRefGoogle Scholar
  37. Tankard, A. J., Jackson, M. P. A., Erickson, K. A., Hobday, O. K., Hunter, D. R., & Minter, W. E. L. (1982). Crustal evolution of southern Africa: 3.8 billion years of earth history. New York: Springer.CrossRefGoogle Scholar
  38. Zaharia, B., Radulian, M., Popa, M., Grecu, B., Bala, A., & Tataru, D. (2008). Estimation of the local response using the Nakamura method for the Bucharesr area. Romanian Reports in Physics, 60, 131–144.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Council for GeosciencePretoriaSouth Africa

Personalised recommendations