Pure and Applied Geophysics

, Volume 175, Issue 12, pp 4225–4239 | Cite as

Joint Use of Seismological and Topological Statistical Methods for the Analysis of 2010–2016 Azerbaijan Seismicity

  • Luciano TelescaEmail author
  • Fakhraddin Kadirov
  • Gurban Yetirmishli
  • Rafig Safarov
  • Sabina Kazimova


The time variation of several statistical parameters describing the complex time dynamics of the seismicity of Azerbaijan from 2010 to 2016 is investigated. Besides the well-known Gutenberg–Richter b value and the coefficients of variation, two quantities, derived by the recent method of horizontal visibility graph are analysed, namely the mean connectivity degree, which depicts an innovative way to link seismic events, and the Kullback–Leibler divergence (KLD) that informs about the irreversibility of the seismic process. Our findings indicate the emergence of pre- and co-seismic patterns in the time variation of all the analysed parameters in relationship with the strongest events of the Azerbaijan seismic catalog. In particular, the typical increase–decrease behavior has been found in b before the occurrence of large shocks. Similarly, the coefficients of variation signals are statistically significant high value in the period when the largest events occur and in most cases even before they struck the area. The mean connectivity degree and the KLD show several anomalous values in association with the occurrence of large events, in agreement with the view of earthquakes as irreversible ruptures of the crust.


Azerbaijan seismicity statistics fractals clustering magnitude 



We acknowledge the CNR-ANAS agreement. This work was partly supported by the Science Development Foundation under the President of the Republic of Azerbaijan—Grant no. EIF-KETPL-2015-1(25)-56/27/2.


  1. Aki, K. (1965). Maximum likelihood estimate of b in the formula log(N) = a − bM and its confidence limits. Bulletin Earthquake Research Institute Tokyo University, 43, 237–239.Google Scholar
  2. Aliyev, Ad A, Guliev, I. S., Dadashov, F. H., & Rahmanov, R. R. (2015). Atlas of the world mud volcanoes (p. 322). Baku: Nafta.Google Scholar
  3. Aliyev, Ad A, Guliev, I. S., & Rakhmanov, R. R. (2009). Catalog of mud volcanoes eruptions of Azerbaijan (1810–2007) (p. 105). Baku: Nafta.Google Scholar
  4. Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2016). Geosciences of Azerbaijan. Volume I: Geology (p. 340). Berlin: Springer. Scholar
  5. Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2017). Geosciences of Azerbaijan. Volume II: Economic geology and applied geophysics (p. 340). Berlin: Springer. Scholar
  6. Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics. Scholar
  7. Babayev, G., & Telesca, L. (2014). Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan). Natural Hazards, 73, 1647–1661.CrossRefGoogle Scholar
  8. Babayev, G., Tibaldi, A., Bonali, F. L., & Kadirov, F. (2014). Evaluation of earthquake-induced strain in promoting mud eruptions: The case of Shamakhi–Gobustan–Absheron areas, Azerbaijan. Nature Hazards, 72, 789–808. Scholar
  9. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New Jersey: Wiley.Google Scholar
  10. De Santis, A., Cianchini, G., Favali, P., Beranzoli, L., & Boschi, E. (2011). The Gutenberg–Richter law and entropy of earthquakes: Two case studies in Central Italy. Bulletin of the Seismological Society of America, 101, 1386–1395. Scholar
  11. Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophysical Research Letters, 40, 2049–2054.CrossRefGoogle Scholar
  12. Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.Google Scholar
  13. Han, Q., Wang, L., Xu, J., Carpinteri, A., & Lacidogna, G. (2015). A robust method to estimate the b-value of the magnitude–frequency distribution of earthquakes. Chaos, Solitons and Fractals, 81, 103–110.CrossRefGoogle Scholar
  14. Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bulletin Earthquake Research Institute, University of Tokyo, 17, 443–478.Google Scholar
  15. Jackson, J. (1992). Partitioning of strike slip and convergent motion between Eurasia and Arabia in Eastern Turkey and the Caucasus. Journal of Geophysical Research, 97, 12471–12479.CrossRefGoogle Scholar
  16. Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the south Caspian Basin. Geophysical Journal International, 148, 214–245.Google Scholar
  17. Kadirov, F., Floyd, M., Alizadeh, A., Guliev, I., Reilinger, R. E., Kuleli, S., et al. (2012). Kinematics of the eastern Caucasus near Baku, Azerbaijan. Natural Hazards, 63, 997–1006. Scholar
  18. Kadirov, F. A., Floyd, M., Reilinger, R., Alizadeh, A., Guliyev, I. S., Mammadov, S. G., et al. (2015). Active geodynamics of the caucasus region: Implications for earthquake hazards in Azerbaijan. Proceedings of Azerbaijan National Academy of Sciences, The Sciences of Earth, 3, 3–17.Google Scholar
  19. Kadirov, F. A., Gadirov, A. G., Babayev, G. R., Agayeva, S. T., Mammadov, S. K., Garagezova, N. R., et al. (2013). Seismic zoning of the southern slope of greater caucasus from the fractal parameters of the earthquakes, stress state and GPS velocities. Izvestiya Physics of the Solid Earth, 49, 554–562. (original in Russian).CrossRefGoogle Scholar
  20. Kadirov, F. A., Guliyev, I. S., Feyzullayev, A. A., Safarov, R. T., Mammadov, S. K., Babayev, G. R., et al. (2014). GPS-based crustal deformations in Azerbaijan and their influence on seismicity and mud volcanism. Izvestiya, Physics of the Solid Earth, 50, 814–823. Scholar
  21. Kadirov, F., Mammadov, S., Reilinger, R., & McClusky, S. (2008). Some new data on modern tectonic deformation and active faulting in Azerbaijan (according to Global Positioning System measurements) Proceedings Azerbaijan National Academy of Sciences. Earth’s Sciences, 1, 82–88.Google Scholar
  22. Kadirov, F. A., & Safarov, R. T. (2013). Deformation of the Earth’s crust in Azerbaijan and surrounding territories based on GPS measurements (in Russian). Proceedings the Azerbaijan National Academy of Sciences, Sciences of Earth, 1, 47–55. (in Russian).Google Scholar
  23. Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104, 117–133.CrossRefGoogle Scholar
  24. Kawai, R., Parrondo, J. M. R., & Van den Broeck, C. (2007). Dissipation: The phase-space perspective. Physical Review Letters, 98, 080602. Scholar
  25. Khalafli, A. A. (2002). Reconstruction of tectonics of Mesozoic and Cainozoic deflections of Lesser Caucasus. The Russian Geophysics Journal, 2, 64–68. (in Russian).Google Scholar
  26. Khalafli, A. A. (2006). Paleomagnetism and some problems of the lesser caucasus shear deformation (p. 202). Baku: Publisher house “Takhsil”. (in Russian).Google Scholar
  27. Khoshnevis, N., Taborda, R., Azizzadeh-Roodpish, S., & Telesca, L. (2017). Analysis of the 2005–2016 earthquake sequence in Northern Iran using the visibility graph. Pageoph, 174, 4003–4019.CrossRefGoogle Scholar
  28. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National academy of Sciences of the United States of America, 105, 4972–4975. Scholar
  29. Lacasa, L., Luque, B., Luque, J., & Nuno, J. C. (2009). The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. Europhysics Letters, 86, 30001.CrossRefGoogle Scholar
  30. Lacasa, L., Nuñez, A., Roldán, E., Parrondo, J. M. R., & Luque, B. (2012). Time series irreversibility: A visibility graph approach. European Physical Journal B: Condensed Matter and Complex Systems, 85, 217. Scholar
  31. Luque, B., Lacasa, L., Luque, J., & Ballesteros, F. (2009). Horizontal visibility graphs: Exact results for random time series. Physics Review E, 80, 046103.CrossRefGoogle Scholar
  32. McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 239–243.Google Scholar
  33. McQuarrie, N., Stock, J., Verdel, C., & Wernicke, B. P. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters, 30, 2036. Scholar
  34. Mellors, R. J., Kilb, D., Aliyev, A., Gasanov, A., & Yetirmishli, G. (2007). Correlations between earthquakes and large mud volcano eruptions. Journal of Geophysical Research, 112, B04304. Scholar
  35. Miyashiro, A., Aki, K., & Shengor, A. M. C. (1984). Orogeny (p. 242). Oxford: Wiley.Google Scholar
  36. Naylor, M., Greenhough, J., McCloskey, J., Bell, A. F., & Main, I. G. (2009). Statistical evaluation of characteristic earthquakes in the frequency magnitude distributions of Sumatra and other subduction zone regions. Geophysical Research Letters, 36, L20303. Scholar
  37. Parrondo, J. M. R., Van den Broeck, C., & Kawai, R. (2009). Entropy production and the arrow of time. New Journal of Physics, 11, 073008.CrossRefGoogle Scholar
  38. Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1–21.CrossRefGoogle Scholar
  39. Reilinger, R., McClusky, S., ArRajehi, A., Mahmoud, S., Ryan, A., Ghebreab, W., et al. (2006a). Geodetic constraints on rupturing of the continental lithosphere along the Red Sea. MARGINS Newsletter, 17, 16–19.Google Scholar
  40. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. (2006b). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411. Scholar
  41. Roberts, N., Bell, A. F., & Main, I. (2015). Are volcanic seismic b-values high, and if so when? Journal of Volcanology and Geothermal Research, 308, 127–141.CrossRefGoogle Scholar
  42. Robertson, A. H. F. (2000). Mesozoic-Tertiary tectonic evolution of a south Tethyan ocean basin and its margins in southern Turkey, in Tectonics and Magmatism in Turkey and the Surrounding Area, edited by E. Bozkurt, J.A. Winchester, and J.D.A. Piper. Geology Society of Special Publications of London, 173, 97–138.CrossRefGoogle Scholar
  43. Roldan, E., & Parrondo, J. M. R. (2010). Estimating dissipation from single stationary trajectories. Physical Review Letters, 105, 150607.CrossRefGoogle Scholar
  44. Sammonds, P. R., Meredith, P. G., & Main, I. G. (1992). Role of pore fluids in the generation of seismic precursors to shear fracture. Nature, 359, 228–230.CrossRefGoogle Scholar
  45. Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73, 1417–1432.CrossRefGoogle Scholar
  46. Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42, 1399–1402.CrossRefGoogle Scholar
  47. Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437, 539–542.CrossRefGoogle Scholar
  48. Sengor, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K. T. Biddle & N. Christie-Blick (Eds.), Strike slip faulting and basin formation. SEPM Special Publication (vol. 37, pp. 227–264). SEPM Society for Sedimentary GeologyGoogle Scholar
  49. Shevchenko, V. I., Guseva, T. V., Lukk, A. A., Mishin, A. V., Prilepin, M. T., Reilinger, R. E., et al. (1999). Recent geodynamics of the Caucasus mountains from GPS and seismological evidence. Izvestiya Physics of the Solid Earth, 35, 691–704.Google Scholar
  50. Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b-value. Bulletin of the Seismological Society of America, 72, 1677–1687.Google Scholar
  51. Shinomoto, S., Miura, K., & Koyama, S. (2005). A measure of local variation of inter-spike intervals. BioSystems, 79, 67–72.CrossRefGoogle Scholar
  52. Smith, W. D. (1981). The b-value as an earthquake precursors. Nature, 289, 136–139.CrossRefGoogle Scholar
  53. Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40, 709–714.CrossRefGoogle Scholar
  54. Telesca, L., Flores-Márquez, E. L., & Ramírez-Rojas, A. (2018). Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone. Physica A, 492, 1373–1381.CrossRefGoogle Scholar
  55. Telesca, L., Kadirov, F., Yetirmishli, G., Safarov, R., Babayev, G., & Ismaylova, S. (2017). Statistical analysis of the 2003–2016 seismicity of Azerbaijan and surrounding areas. Journal of Seismology, 21, 1467–1485.CrossRefGoogle Scholar
  56. Telesca, L., & Lovallo, M. (2012). Analysis of seismic sequences by using the method of visibility graph. Europhysics Letters, 97, 50002.CrossRefGoogle Scholar
  57. Telesca, L., Lovallo, M., Aggarwal, S. K., & Khan, P. K. (2015a). Precursory signatures in the visibility graph analysis of seismicity: An application to the Kachchh (Western India) seismicity. Physics and Chemistry of the Earth, 85–86, 195–200.CrossRefGoogle Scholar
  58. Telesca, L., Lovallo, M., Aggarwal, S. K., Khan, P. K., & Rastogi, B. K. (2016a). Visibility graph analysis of 2003-2012 earthquake sequence in Kachchh region, Western India. Pageoph, 173, 125–132.CrossRefGoogle Scholar
  59. Telesca, L., Lovallo, M., Babayev, G., & Kadirov, F. (2013a). Spectral and informational analysis of seismicity: An application to the 1996-2012 seismicity of Northern Caucasus-Azerbaijan part of Greater Caucasus-Kopet Dag region. Physica A, 392, 6064–6078.CrossRefGoogle Scholar
  60. Telesca, L., Lovallo, M., Lopez, C., & Martì Molist, J. (2016b). Multiparametric statistical investigation of seismicity occurred at El Hierro (Canary Islands) from 2011 to 2014. Tectonophysics, 672–673, 121–128.CrossRefGoogle Scholar
  61. Telesca, L., Lovallo, M., Mammadov, S., Kadirov, F., & Babayev, G. (2015b). Power spectrum analysis and multifractal detrended fluctuation analysis of Earth’s gravity time series. Physica A, 428, 426–434.CrossRefGoogle Scholar
  62. Telesca, L., Lovallo, M., Ramirez-Rojas, A., & Flores-Marquez, L. (2013b). Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone. Physica A, 392, 6571–6577.CrossRefGoogle Scholar
  63. Telesca, L., Lovallo, M., & Toth, L. (2014). Visibility graph analysis of 2002-2011 Pannonian seismicity. Physica A, 416, 219–224.CrossRefGoogle Scholar
  64. Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8, 152–158.CrossRefGoogle Scholar
  65. Utsu, T. (1999). Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pageoph, 155, 509–535.CrossRefGoogle Scholar
  66. Weiss, G. (1975). Time-reversibility of linear stochastic processes. Journal of Applied Probability, 12, 831–836.CrossRefGoogle Scholar
  67. Wiemer, S., McNutt, S. R., & Wyss, M. (1998). Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley caldera, California. Geophysical Journal International, 134, 409–421.CrossRefGoogle Scholar
  68. Wiemer, S., & Wyss, M. (2000). Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.CrossRefGoogle Scholar
  69. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95, 684–698.CrossRefGoogle Scholar
  70. Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal of the Royal Astronomical Society, 31, 341–359.CrossRefGoogle Scholar
  71. Yakubov, A. A., Alizade, A. A., & Zeinalov, M. M. (1971). Mud volcanoes of Azerbajan SSR (p. 258). Atlas: Elm Press, Baku.Google Scholar
  72. Yetirmishli, G.J., & Kazimova, S.E. (2017). Types of tectonic movements of seismogenic regions of Azerbaijan by mechanisms of earthquake foci. In Geological-geophysical studies of the deep structure of the Caucasus: Geology and geophysics of caucasus, Vladikavkaz, pp. 20–25.Google Scholar
  73. Yetirmishli, G. J., Mammadli, T. Y., & Kazimova, S. E. (2013). Features of seismicity of Azerbaijan part of the Greater Caucasus. Journal of Georgian Geophysical Society, Physics of Solid Earth, 16, 55–60.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luciano Telesca
    • 1
    Email author
  • Fakhraddin Kadirov
    • 2
  • Gurban Yetirmishli
    • 3
  • Rafig Safarov
    • 2
  • Sabina Kazimova
    • 3
  1. 1.National Research Council, Institute of Methodologies for Environmental AnalysisTitoItaly
  2. 2.Institute of Geology and Geophysics, ANASBakuAzerbaijan
  3. 3.Republican Seismological Survey Center of ANASBakuAzerbaijan

Personalised recommendations