Advertisement

Evaluation of Interannual Simulations and Indian Ocean Dipole Events During 2000–2014 from a Basin Scale General Circulation Model

  • K. K. Sandeep
  • Vimlesh Pant
Article
  • 43 Downloads

Abstract

Interannual simulations performed using an eddy-permitting ocean general circulation model (OGCM) for years 2000–2014 were validated against buoy measurements over the Indian Ocean (IO). Model-simulated fields were evaluated extensively using multiple statistical metrics to quantify the quality of model in reproducing variability in oceanic surface and subsurface features. The model-simulated sea surface temperature (SST) at different moored buoy locations exhibits high (close to + 0.9) correlation coefficient (R) with the ranges of standard deviation (SD) of simulated SST consistent with the corresponding buoy observations. The root mean square difference (RMSD) estimated between the buoy and simulated SST was found to be less than 0.6 °C at most of the buoy locations. The model-simulated subsurface temperature profile, including the thermocline, resembled good agreement with the buoy profiles. Intraseasonal and interannual variability of 20 °C isotherm (D20) was simulated reasonably well as observed at the respective buoy locations. Mean error in surface currents was low; however, the meridional component from model simulations showed a better agreement (RMSD < 0.25 m/s) with the observations as compared to zonal components (< 0.4 m/s) for the periods of buoy data availability. The Dipole Mode Index (DMI) derived from simulated SST reproduces the positive/negative Indian Ocean Dipole (IOD) events that occurred during the simulation period. Interannual variability in temperature, currents and oceanic mixed layer depth was analyzed in response to IOD events. The anomalies in equatorial currents were found to affect the strength of coastal currents along the Indian coastlines. Model simulations showed the enhanced (suppressed) coastal upwelling process along the Sumatra coast that leads to anomalous cooling (warming) off the Sumatra coast during the positive (negative) IOD events.

Keywords

Sea surface temperature ROMS model Indian Ocean RAMA buoy interannual variability 

Notes

Acknowledgements

RAMA buoy data provided by TAO Project Office of NOAA/PMEL, USA is thankfully acknowledged. Surface current data obtained from Ocean Surface Current Analysis Real-time (OSCAR) through the webpage (http://www.oscar.noaa.gov) managed by OSCAR Project Office, Seattle, WA. Argo data were collected and made freely available by the International Argo Project and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). Argo is a pilot program of the Global Ocean Observing System. The TropFlux data are produced under collaboration between Laboratoired’ Oceanographie Experimentation et Approches Numeriques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India). The study benefitted from the funding support under HOOFS program of INCOIS, Hyderabad (ESSO, Ministry of Earth Sciences, Govt. of India). High Performance Computing (HPC) facility provided by IIT Delhi and Department of Science and Technology (DST-FIST, 2014), Govt. of India are thankfully acknowledged. Graphics generated in this manuscript using Ferret and NCL.

References

  1. Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2.Google Scholar
  2. Anderson, D., Carrington, D., Corry, R., & Gordon, C. (1991). Modeling the variability of the Somali current. Journal of Marine Research, 49, 659–696.  https://doi.org/10.1357/002224091784995693.CrossRefGoogle Scholar
  3. Anderson, D. L. T., & Moore, D. W. (1979). Cross-equatorial inertial jets with special relevance to very remote forcing of the Somali Current. Deep Sea Research Part A. Oceanographic Research Papers, 26, 1–22.  https://doi.org/10.1016/0198-0149(79)90082-7.CrossRefGoogle Scholar
  4. Arakawa, A., & Lamb, V.R., (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 173–265.  https://doi.org/10.1016/b978-0-12-460817-7.50009-4.
  5. Bonjean, F., & Lagerloef, G. S. (2002). Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 32(10), 2938–2954.CrossRefGoogle Scholar
  6. Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, E., et al. (2008). The Pirata Program: History, accomplishments, and future directions. Bulletin of the American Meteorological Society, 89, 1111–1125.  https://doi.org/10.1175/2008BAMS2462.1.CrossRefGoogle Scholar
  7. Chassignet, E. P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D. B., et al. (2000). DAMEE-NAB: The base experiments. Dynamics of Atmospheres and Oceans, 32, 155–183.  https://doi.org/10.1016/S0377-0265(00)00046-4.CrossRefGoogle Scholar
  8. Cox M.D. (1976). Equatorially trapped waves and the generation of the Somali Current. Deep Sea Research and Oceanographic Abstracts, 23(12), 1139–1152. Elsevier.Google Scholar
  9. Cox, M. D. (1979). A numerical study of Somali Current eddies. Journal of Physical Oceanography, 9(2), 311–326.CrossRefGoogle Scholar
  10. David, L. T., & Carrington, D. J. A. (1993). modeling interannual variability in the indian ocean using momentum fluxes from the operational weather analyses of the United Kingdom Meteorological Office and European Centre for Medium Range Weather Forecast. Journal of Geophysical Research, 98, 12483–12499.CrossRefGoogle Scholar
  11. Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., & Young, G. S. (1996a). Cool-skin and warm-layer effects on sea surface temperature. Journal of Geophysical Research.  https://doi.org/10.1029/95jc03190.Google Scholar
  12. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., & Young, G. S. (1996b). Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747–3764.CrossRefGoogle Scholar
  13. Gadgil, S., Vinayachandran, P. N., Francis, P. A., & Gadgil, S. (2004). Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophysical Research Letters, 31, 2–5.  https://doi.org/10.1029/2004GL019733.CrossRefGoogle Scholar
  14. George, M. S., Bertino, L., Johannessen, O. M., & Samuelsen, A. (2010). Validation of a hybrid coordinate ocean model for the Indian Ocean. Journal of Operational Oceanography, 3, 25–38.  https://doi.org/10.1080/1755876X.2010.11020115.CrossRefGoogle Scholar
  15. Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., et al. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227, 3595–3624.  https://doi.org/10.1016/j.jcp.2007.06.016.CrossRefGoogle Scholar
  16. Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., & Shchepetkin, A. F. (2000). Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dynamics of atmospheres and oceans, 32, 239–281.  https://doi.org/10.1016/S0377-0265(00)00049-X.CrossRefGoogle Scholar
  17. Haugen, V. E., Johannessen, O. M., & Evensen, G. (2002). Indian Ocean: validation of the miami isopycnic coordinate ocean model and ENSO events during 1958–1998. Journal of Geophysical Research.  https://doi.org/10.1029/2000JC000330.Google Scholar
  18. Huffman, G.J., Adler, R.F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., & Schneider, U. (1997). The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bulletin of the American Meteorological Society, 78, 5–20. https://doi.org/10.1175/1520-0477(1997)078<0005:tgpcpg>2.0.co;2.Google Scholar
  19. Jensen, T. G., Wijesekera, H. W., Nyadjro, E. S., Thoppil, P. G., Shriver, J. F., Sandeep, K. K., & Pant, V. (2016). Modeling salinity exchanges between the equatorial Indian Ocean and the Bay of Bengal. Oceanography, 29(2), 92–101.CrossRefGoogle Scholar
  20. Kantha, L., Rojsiraphisal, T., & Lopez, J. (2008). The North Indian Ocean circulation and its variability as seen in a numerical hindcast of the years 1993–2004. Progress in Oceanography, 76, 111–147.  https://doi.org/10.1016/j.pocean.2007.05.006.CrossRefGoogle Scholar
  21. Kara, A. B., & Hurlburt, H. E. (2006). Daily inter-annual simulations of SST and MLD using atmospherically forced OGCMs: Model evaluation in comparison to buoy time series. Journal of Marine Systems, 62, 95–119.  https://doi.org/10.1016/j.jmarsys.2006.04.004.CrossRefGoogle Scholar
  22. Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2000). An optimal definition for ocean mixed layer depth. Journal of Geophysical Research, 105, 16803.  https://doi.org/10.1029/2000JC900072.CrossRefGoogle Scholar
  23. Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2003). Mixed layer depth variability over the global ocean. Journal of Geophysical Research, 108, 3079.  https://doi.org/10.1029/2000JC000736.CrossRefGoogle Scholar
  24. Large, W. G., Mcwilliams, J. C., & Doney, S. C. (1994). Oceanic Vertical mixing—a review and a model with a nonlocal boundary-layer parameterization. Reviews of Geophysics, 32, 363–403.  https://doi.org/10.1029/94rg01872.CrossRefGoogle Scholar
  25. Li, T., Zhang, Y., Lu, E., & Wang, D. (2002). Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophysical Research Letters, 29, 24–25.  https://doi.org/10.1029/2002gl015789.Google Scholar
  26. Liu, W.T., Katsaros, K.B., & Businger, J.A. (1979). Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1979)036<1722:bpoase>2.0.co;2.Google Scholar
  27. Marchesiello, P., McWilliams, J. C., Shchepetkin, A., Physics, P., & Angeles, L. (2003). Equilibrium structure and dynamics of the california current system. Journal of Physical Oceanography, 33, 753–783.CrossRefGoogle Scholar
  28. McCreary, J. P., & Kundu, P. K. (1988). A numerical investigation of the Somali Current during the Southwest Monsoon. Journal of Marine Research, 46, 25–58.  https://doi.org/10.1357/002224088785113711.CrossRefGoogle Scholar
  29. McCreary, J. P., Kundu, P. K., & Molinari, R. L. (1993). A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, 31, 181–244.  https://doi.org/10.1016/0079-6611(93)90002-U.CrossRefGoogle Scholar
  30. McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J.-R., Gage, K. S., Halpern, D., et al. (1998). The Tropical Ocean-Global Atmosphere observing system: A decade of progress. Journal of Geophysical Research, 103, 14169.  https://doi.org/10.1029/97JC02906.CrossRefGoogle Scholar
  31. McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N., Ravichandran, M., et al. (2009). RAMA: The research moored array for African–Asian–Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90, 459–480.  https://doi.org/10.1175/2008BAMS2608.1.CrossRefGoogle Scholar
  32. Murtugudde, R., McCreary, J. P., & Busalacchi, A. J. (2000). Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. Journal of Geophysical Research: Oceans, 105, 3295–3306.  https://doi.org/10.1029/1999JC900294.CrossRefGoogle Scholar
  33. Phillips, N. A. (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology. https://doi.org/10.1175/1520-0469(1957)014<0184:acshss>2.0.co;2.Google Scholar
  34. Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., & McPhaden, M. J. (2012). TropFlux: Air–sea fluxes for the global tropical oceans-description and evaluation. Climate Dynamics, 38, 1521–1543.  https://doi.org/10.1007/s00382-011-1115-0.CrossRefGoogle Scholar
  35. Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., McPhaden, M. J., Cronin, M. F., et al. (2013). TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Climate Dynamics, 40, 2049–2071.  https://doi.org/10.1007/s00382-012-1455-4.CrossRefGoogle Scholar
  36. Rao, S. A., Behera, S. K., Masumoto, Y., & Yamagata, T. (2002). Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 1549–1572.  https://doi.org/10.1016/S0967-0645(01)00158-8.CrossRefGoogle Scholar
  37. Rao, K.G, & Goswami, B.N. (1988). Interannual variations of sea surface temperature over the Arabian Sea and the Indian Monsoon: A new perspective. Monthly Weather Review. https://doi.org/10.1175/1520-0493(1988)116<0558:ivosst>2.0.co;2.Google Scholar
  38. Ravichandran, M., Behringer, D., Sivareddy, S., Girishkumar, M. S., Chacko, N., & Harikumar, R. (2013). Evaluation of the global ocean data assimilation system at INCOIS: The Tropical Indian Ocean. Ocean Modelling, 69, 123–135.CrossRefGoogle Scholar
  39. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.  https://doi.org/10.1038/43854.Google Scholar
  40. Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151–169.  https://doi.org/10.3354/cr025151.CrossRefGoogle Scholar
  41. Schiller, A., Godfrey, J.S., McIntosh, P.C., Meyers, G., & Fiedler, R. (2000). Interannual dynamics and thermodynamics of the Indo–Pacific Oceans. Journal of Physical Oceanography, 30, 987–1012. https://doi.org/10.1175/1520-0485(2000)030<0987:idatot>2.0.co;2.Google Scholar
  42. Schott, F. A., & McCreary, J. P. (2001). The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51, 1–123.  https://doi.org/10.1016/S0079-6611(01)00083-0.CrossRefGoogle Scholar
  43. Schott, F. A., Xie, S. P., & McCreary, J. P., Jr. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47, 1–46.  https://doi.org/10.1029/2007RG000245.1.INTRODUCTION.CrossRefGoogle Scholar
  44. Shankar, D., Vinayachandran, P. N., & Unnikrishnan, A. S. (2002). The monsoon currents in the north Indian Ocean. Progress in Oceanography, 52(1), 63–120.CrossRefGoogle Scholar
  45. Shchepetkin, A.F., & McWilliams, J.C. (1998). Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Review, 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126<1541:qmasbo>2.0.co;2.Google Scholar
  46. Shchepetkin, A.F., & McWilliams, J.C. (2003). A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108, 3090.  https://doi.org/10.1029/2001jc001047.
  47. Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347–404.  https://doi.org/10.1016/j.ocemod.2004.08.002.CrossRefGoogle Scholar
  48. Shenoi, S. S. C., Shankar, D., & Shetye, S. R. (2002). Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. Journal of Geophysical Research, 107, 1–14.  https://doi.org/10.1029/2000JC000679.CrossRefGoogle Scholar
  49. Sindhu, B., Suresh, I., Unnikrishnan, A. S., Bhatkar, N. V., Neetu, S., & Michael, G. S. (2007). Improved bathymetric datasets for the shallow water regions in the Indian Ocean. Journal of Earth System Science, 116, 261–274.  https://doi.org/10.1007/s12040-007-0025-3.CrossRefGoogle Scholar
  50. Song, Y., & Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1), 228–244.CrossRefGoogle Scholar
  51. Song, Q., Vecchi, G. A., & Rosati, A. J. (2007). Indian Ocean variability in the GFDL coupled climate model. Journal of Climate, 20, 2895–2916.  https://doi.org/10.1175/JCLI4159.1.CrossRefGoogle Scholar
  52. Tourre, Y.M., & White, W.B. (1995). ENSO Signals in Global Upper-Ocean Temperature. Journal of Physical Oceanography. https://doi.org/10.1175/1520-0485(1995)025<1317:esiguo>2.0.co;2.Google Scholar
  53. Trenary, L. L., & Han, W. (2012). Intraseasonal-to-interannual variability of South Indian Ocean Sea Level and Thermocline: Remote versus local forcing. Journal of Physical Oceanography, 42, 602–627.  https://doi.org/10.1175/JPO-D-11-084.1.CrossRefGoogle Scholar
  54. Vinayachandran, P.N., Francis, P.A., & Suryachandra Rao, A. (2009). Indian Ocean dipole: Processes and impacts. Current Trends in Science, 569–589.Google Scholar
  55. Vinayachandran, P. N., Iizuka, S., & Yamagata, T. (2002). Indian Ocean dipole mode events in an ocean general circulation model. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 1573–1596.  https://doi.org/10.1016/S0967-0645(01)00157-6.CrossRefGoogle Scholar
  56. Vinayachandran, P. N., Saji, N. H., & Yamagata, T. (1999). Response of the Equatorial Indian Ocean to an unusual wind event during 1994. Geophysical Research Letters, 26, 1613–1616.  https://doi.org/10.1029/1999GL900179.CrossRefGoogle Scholar
  57. Vinayachandran, P.N., & Shetye, S.R. (1991). The warm pool in the Indian Ocean. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 100(2), 165–175.Google Scholar
  58. Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature, 401, 356–360.  https://doi.org/10.1038/43848.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations