Pure and Applied Geophysics

, Volume 175, Issue 11, pp 3989–4005 | Cite as

Mediterranean Surface Geostrophic Circulation from Satellite Gravity and Altimetry Observations

  • M. I. VigoEmail author
  • M. D. Sempere
  • B. F. Chao
  • M. Trottini


We present a data-based approach to study the mean and the climatology of the surface geostrophic currents (SGC) for the Mediterranean Sea, using satellite ocean surface altimetry observations for 22 years (1993–2014) in conjunction with the geoid solution derived from the space mission of GOCE (gravity field and steady-state ocean circulation explorer; Release 4). The resultant product is the Mediterranean SGC velocity field, that we denote by SGC\(_{GOCE-Alt}\), given in spatial resolution of 1/4\({^\circ }\) and monthly time resolution. It exhibits smaller scales and lower dynamic intensities in comparison with open oceans, making the Mediterranean Sea a challenging test case for our satellite-based analysis. The mean SGC\(_{GOCE-Alt}\) is largely consistent with previous findings but with additional circulation features in time and space. We also compare our results with the SGC output from the regional hydrodynamic model of Mercator that assimilates satellite altimetry, satellite sea surface temperature, and in situ observations. The prominent SGC features agree well not only on the large and subbasin scales but also in the widespread mesoscale dynamics. We find, however, comparatively lower intensities than the Mercator model in general, with differences that are on average around 7 cm/s, but might reach 13 cm/s in some coastal areas.


Surface geostrophic circulation mean dynamic topography gravity field and steady-state ocean circulation explorer (GOCE) Mediterranean Sea 



We thank the two anonymous reviewers whose constructive comments/suggestions helped improve and clarify this manuscript. We acknowledge the support of all data providers: ESA CCI Sea Level Project for the Altimetry data, DTU SPACE from the Danish National Space Center for MDT and MSS products, the surface currents from the Mercator Ocean Project, and LEGOS and CERSAT for the Ekman Surface Currents. The work is supported by Taiwan MoST Grant #105-2811-M-001-031. M. Dolores Sempere is supported by the PhD Grant UAFPU2014-5884 from the University of Alicante.


  1. Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugre, Y., et al. (2015). Improved sea level record over the satellite altimetry era (1993–2010) from the climate change initiative project. Ocean Science, 11, 6782. Scholar
  2. Adani, M., Dobricic, S., & Pinardi, N. (2011). Quality assessment of a 1985–2007 Mediterranean sea reanalysis. Journal of Atmospheric and Oceanic Technology, 28(4), 569–589.CrossRefGoogle Scholar
  3. Andersen, O.B., Knudsen, P., and Stenseng, L. (2015). The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. International Association of Geodesy Symposia (pp. 1-10). Springer, Berlin.
  4. Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., & Pinardi, N. (1997). The adriatic sea general circulation. Part ii: Baroclinic circulation structure. Journal of Physical Oceanography, 27(8), 15151532.Google Scholar
  5. Bèranger, K., Mortier, L., Gasparini, G.-P., Gervasio, L., Astraldi, M., & Crèpon, M. (2004). The dynamics of the Sicily strait: A comprehensive study from observations and models. Deep Sea Research II, 51, 411440.CrossRefGoogle Scholar
  6. Bessières, L., Rio, M. H., Dufau, C., Boone, C., & Pujol, M. I. (2013). Ocean state indicators from MyOcean altimeter products. Ocean Science, 9(3), 545–560. Scholar
  7. Bingham, R. J., Knudsen, P., Andersen, O., & Pail, R. (2011). An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophysical Research Letters, 38, L01606. Scholar
  8. Birol, F., Cancet, M., & Estournel, C. (2010). Aspects of the seasonal variability of the Northern Current (NW Mediterranean Sea) observed by altimetry. Journal of Marine Systems, 81, 297–311. Scholar
  9. Borzelli, G. L. E., Gacic, M., Cardin, V., & Civitarese, G. (2009). Eastern Mediterranean transient and reversal of the Ionian sea circulation. Geophysical Research Letters, 36, L15108. Scholar
  10. Bouffard, J., Vignudelli, S., Cipollini, P., & Menard, Y. (2008). Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophysical Research Letters, 35, L10601. Scholar
  11. Bouffard, J., Vignudelli, S., Herrmann, M., Lyard, F., Marsaleix, P., Mnard, Y., et al. (2008). Comparison of ocean dynamics with a regional circulation model and improved altimetry in the North-western Mediterranean. Terrestrial Atmospheric and Oceanic Sciences, 19, 117–133. Scholar
  12. Bouffard, J., Roblou, L., Birol, F., Pascual, A., Feneglio-Marc, L., Cancet, M., et al. (2011). Introduction and assessment of improved coastal altimetry strategies: Case study over the North Western Mediterranean Sea. In S. Vignudelli, et al. (Eds.), Coastal Altimetry. Berlin: Springer.Google Scholar
  13. Buongiorno Nardelli, B., Cavalieri, O., Rio, M.-H., & Santoleri, R. (2006). Subsurface geostrophic velocities inference from altimeter data: Application to the Sicily Channel (Mediterranean Sea). Journal of Geophysical Research, 111, C04007. Scholar
  14. Del Rio Vera, J., Criado-Aldeanueva, F., Lafuente, J., & Soto-Navarro, J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68, 232–235. Scholar
  15. Durrieu de Madron, X., et al. (2011). Marine ecosystems responses to climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography, 91, 97–166. Scholar
  16. Förste, C., Bruinsma, S., Shako, R., Marty, J.-C., Flechtner, F., Abrikosov, O., Dahle, C., Lemoine, J.-M., Neumayer, K.H., Biancale, R., Barthelmes, F., Knig, R., Balmino, G. (2011). EIGEN-6 a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts 13:EGU2011-3242-2, EGU General AssemblyGoogle Scholar
  17. Gaĉić, M., Eusebi Borzelli, G. L., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608.CrossRefGoogle Scholar
  18. Ioannou, A., Stegner, A., Le Vu, B., Taupier-Letage, I., & Speich, S. (2017). Dynamical evolution of intense Ierapetra eddies on a 22 year long period. Journal of Geophysical Research: Oceans, 122, 92769298. Scholar
  19. IPCC, 5th Assessment report (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge University Press, Cambridge.Google Scholar
  20. Jebri, F., Birol, F., Zakardjian, B., Bouffard, J., & Sammari, C. (2016). Exploiting coastal altimetry to improve the surface circulation scheme over the central Mediterranean Sea. Journal of Geophysical Research: Oceans, 121, 4888–4909. Scholar
  21. Jebri, F., Zakardjian, B., Birol, F., Bouffard, J., Jullion, L., & Sammari, C. (2017). Interannual variations of surface currents and transports in the Sicily channel derived from coastal altimetry. Journal of Geophysical Research: Oceans, 122, 8330–8353. Scholar
  22. Knudsen, P., Bingham, R., Andersen, O., & Marie-Helene, Rio. (2011). A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85, 861–879. Scholar
  23. Korres, G., Pinardi, N., & Lascaratos, A. (2000). The ocean response to low frequency interannual atmospheric variability in the Mediterranean Sea, Part I: Sensitivity experiments and energy analysis. Journal of Climate, 13, 705–731.CrossRefGoogle Scholar
  24. Kundu, P. J. (1975). Ekman veering observed near the ocean bottom. Journal of Physical Oceanography, 6, 238–242.CrossRefGoogle Scholar
  25. Malanotte-Rizzoli, P., Manca, B. B., Ribera d Acala, M., et al. (1999). The Eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations. Dynamics of Atmospheres and Oceans, 29, 365–395.CrossRefGoogle Scholar
  26. Marullo S., Santoleri R., and Bignami F. (1994). The surface characteristics of the Tyrrhenian sea : Historical satellite data analysis. . In La Violette, P. E.(Ed), Seasonal and interannual variability of the Western Mediterranean sea, Coastal and Estuarine Studies, 46, pp 135–154.Google Scholar
  27. Menna, M., Poulain, P. M., Mauri, E., Sampietro, D., Panzetta, F., Reguzzoni, M., et al. (2013). Mean surface geostrophic circulation of the Mediterranean Sea estimated from GOCE geoid models and altimetric mean sea surface: initial validation and accuracy assessment. Bollettino di Geofisica Teorica e Applicata, 54, 347–365. Scholar
  28. Millot, C. (1985). Some features of the Algerian current. Journal of Geophysical Research, 90(C4), 7169–7176.CrossRefGoogle Scholar
  29. Millot, C., & Taupier-Letage, I. (2005). Circulation in the Mediterranean Sea. In A. Saliot (Ed.), The Handbook of Environmental Chemistry book series (volume 5K) (pp. 29–66). Heidelberg: Springer. Scholar
  30. Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., & Béranger, K. (2014). Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities. Journal of Geophysical Research: Oceans, 119, 86038626. Scholar
  31. Morrow, R., Carret, A., Birol, F., Nino, F., Valladeau, G., Boy, F., et al. (2017). Observability of fine-scale ocean dynamics in the northwestern Mediterranean Sea. Ocean Science, 13, 1329.CrossRefGoogle Scholar
  32. Poulain, P.-M. (2001). Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. Journal of Marine Systems, 29, 332.Google Scholar
  33. Poulain, P.-M., Menna, M., & Mauri, E. (2012). Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. Journal of Physical Oceanography, 42, 973–990.CrossRefGoogle Scholar
  34. Poulain, P.-M., Bussani, A., Gerin, R., Jungwirth, R., Mauri, E., Menna, M., et al. (2013). Mediterranean surface currents measured with drifters: From basin to subinertial scales. Oceanography, 26(1), 3847. Scholar
  35. Rinaldi, E., Buongiorno Nardelli, B., Zambianchi, E., Santoleri, R., & Poulain, P. M. (2010). Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea. Journal of Geophysical Research, 115, 04024. Scholar
  36. Robinson, A. R., Golnaraghi, M., Leslie, W. G., Artegiani, A., Hecht, A., Lazzoni, E., et al. (1991). The eastern Mediterranean general circulation: features, structure and variability. Dynamics of Atmospheres and Oceans, 15, 215240.CrossRefGoogle Scholar
  37. Robinson, A. R., Sellschopp, J., Warn-Varnas, A., Leslie, W. G., Lozano, C. J., Haley, P. J, Jr., et al. (1999). The Atlantic Ionian Stream. Journal of Marine Systems, 20, 129156.CrossRefGoogle Scholar
  38. Robinson, A. R., Leslie, W. G., Theocharis, A., & Lascaratos, A. (2001). Mediterranean Sea Circulation. Cambridge: Academic Press. Scholar
  39. Roether, W., Klein, B., Manca, B., Theocharis, A., & Kioroglou, A. (2007). Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Progress in Oceanography, 74, 540571.CrossRefGoogle Scholar
  40. Roussenov, V., Stanev, E., Artale, V., & Pinardi, N. (1995). A seasonal model of the Mediterranean Sea general circulation. Journal of Geophysical Research, 100(C7), 13515–13538. Scholar
  41. Sánchez-Reales, J. M., Vigo, M. I., Jin, S. G., & Chao, B. F. (2012). Global surface geostrophic currents from satellite altimetry and GOCE geoid. Marine Geodesy, 35(sup1), 175–189.CrossRefGoogle Scholar
  42. Sánchez-Reales, J. M., Vigo, M. I., & Trottini, M. (2014). Ocean surface geostrophic circualtion climatology and annual variations inferred from aatellite Altimetry and GOCE gravity data. Pure and Applied Geophysics, 173, 849–860. Scholar
  43. Sánchez-Reales, J. M., Andersen, O. B., & Vigo, M. I. (2016). Improving surface geostrophic current from a GOCE-derived mean dynamic topography using edge-enhancing diffusion filtering. Pure and Applied Geophysics, 173, 871–884. Scholar
  44. Snaith, H. M., Allen, J., Alderson, S., & Guymer, T. (2003). Monitoring of the eastern alboran gyre using combined altimetry and in situ data. Philosophical Transactions of the Royal Society London A, 361, 6570.CrossRefGoogle Scholar
  45. Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., & Sánchez-Román, A. (2010). Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. Journal of Geophysical Research, 115, C10023. Scholar
  46. Sudre, J., Maes, C., & Garcon, V. (2016). On the global estimates of geostrophic and Ekman surface currents. Limnology and Oceanography: Fluids and Environments, 3, 120. Scholar
  47. Vélez-Belch, P., Vargas-Yez, M., & Tintor, J. (2005). Observation of a western alborn gyre migration event. Progress in Oceanography, 66(24), 190210.Google Scholar
  48. Vigo, I., García, D., & Chao, B. F. (2005). Change of sea level trend in the Mediterranean and Black seas. Journal of Marine Research, 63, 10851100.CrossRefGoogle Scholar
  49. Vigo, M. I., Sánchez-Reales, J. M., Trottini, M., & Chao, B. F. (2011). Mediterranean Sea level variations: Analysis of the satellite altimetric data, 19922008. Journal of Geodynamics, 52, 271–278. Scholar
  50. Viúdez, A., Haney, R. L., & Tintoré, J. (1996). Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations.Part II: Mesoscale ageostrophic motion diagnosed through density dynamical assimilation. Journal of Physical Oceanography, 26, 706724.Google Scholar
  51. Viúdez, A., Pinot, J. M., & Haney, R. L. (1998). On the upper layer circulation in the Alborn Sea. Journal of Geophysical Research, 103(C10), 21. Scholar
  52. Woodworth, P. L., Gravelle, M., Marcos, M., & Wöppelmann, G. (2015). The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. Journal of Geodesy, 89, 811–827. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. I. Vigo
    • 1
    Email author
  • M. D. Sempere
    • 1
  • B. F. Chao
    • 2
  • M. Trottini
    • 3
  1. 1.Department Applied MathematicsUniversity of AlicanteAlicanteSpain
  2. 2.Institute of Earth Sciences, Academia SinicaTaipeiTaiwan, ROC
  3. 3.Department MathematicsUniversity of AlicanteAlicanteSpain

Personalised recommendations