Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 12, pp 4389–4409 | Cite as

An Improved 3D Joint Inversion Method of Potential Field Data Using Cross-Gradient Constraint and LSQR Method

  • Farshad Joulidehsar
  • Ali MoradzadehEmail author
  • Faramarz Doulati Ardejani
Article

Abstract

The joint interpretation of two sets of geophysical data related to the same source is an appropriate method for decreasing non-uniqueness of the resulting models during inversion process. Among the available methods, a method based on using cross-gradient constraint combines two datasets is an efficient approach. This method, however, is time-consuming for 3D inversion and cannot provide an exact assessment of situation and extension of anomaly of interest. In this paper, the first attempt is to speed up the required calculation by substituting singular value decomposition by least-squares QR method to solve the large-scale kernel matrix of 3D inversion, more rapidly. Furthermore, to improve the accuracy of resulting models, a combination of depth-weighing matrix and compacted constraint, as automatic selection covariance of initial parameters, is used in the proposed inversion algorithm. This algorithm was developed in Matlab environment and first implemented on synthetic data. The 3D joint inversion of synthetic gravity and magnetic data shows a noticeable improvement in the results and increases the efficiency of algorithm for large-scale problems. Additionally, a real gravity and magnetic dataset of Jalalabad mine, in southeast of Iran was tested. The obtained results by the improved joint 3D inversion of cross-gradient along with compacted constraint showed a mineralised zone in depth interval of about 110–300 m which is in good agreement with the available drilling data. This is also a further confirmation on the accuracy and progress of the improved inversion algorithm.

Keywords

LSQR method LB algorithm compact constraint JalalAbad mine gravity and magnetic inversion 

References

  1. Abdelazeem, M. M. (2013). Solving ill-posed magnetic inverse problem using a Parameterized Trust-Region Sub-problem. Contributions to Geophysics and Geodesy, 43(2), 99–123.CrossRefGoogle Scholar
  2. Abedi, M., Asghari, O., & Norouzi, G.-H. (2015). Collocated cokriging of iron deposit based on a model of magnetic susceptibility: a case study in Morvarid mine, Iran. Arabian Journal of Geosciences, 8(4), 2179–2189.CrossRefGoogle Scholar
  3. Barbosa, V. C. F., & Silva, J. B. C. (1994). Generalized compact gravity inversion. Geophysics, 59(1), 57–68.CrossRefGoogle Scholar
  4. Bennington, N. L., Zhang, H., Thurber, C. H., & Bedrosian, P. A. (2015). Joint inversion of seismic and magnetotelluric data in the Parkfield region of California using the normalized cross-gradient constraint. Pure and Applied Geophysics, 172(5), 1033–1052.CrossRefGoogle Scholar
  5. Berge, P. A., Berryman, J. G., Bertete-Aguirre, H., Bonner, P., Roberts, J. J., & Wildenschild, D. (2000). Joint inversion of geophysical data for site characterization and restoration monitoring. LLNL Rep. UCRL-ID-128343, Proj, 55411.Google Scholar
  6. Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.Google Scholar
  7. Boulanger, O., & Chouteau, M. (2001). Constraints in 3D gravity inversion. Geophysical Prospecting, 49(2), 265–280.CrossRefGoogle Scholar
  8. Calvetti, D., Golub, G. H., & Reichel, L. (1999). Estimation of the L-curve via Lanczos bidiagonalization. BIT Numerical Mathematics, 39(4), 603–619.CrossRefGoogle Scholar
  9. Calvetti, D., Morigi, S., Reichel, L., & Sgallari, F. (2000a). An L-ribbon for large underdetermined linear discrete ill-posed problems. Numerical Algorithms, 25(1–4), 89–107.CrossRefGoogle Scholar
  10. Calvetti, D., Reichel, L., Sgallari, F., & Spaletta, G. (2000b). A regularizing Lanczos iteration method for underdetermined linear systems. Journal of Computational and Applied Mathematics, 115(1), 101–120.CrossRefGoogle Scholar
  11. Camacho, A. G., Montesinos, F. G., & Vieira, R. (2000). Gravity inversion by means of growing bodies. Geophysics, 65(1), 95–101.CrossRefGoogle Scholar
  12. Cella, F., & Fedi, M. (2012). Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting, 60(2), 313–336.CrossRefGoogle Scholar
  13. Chasseriau, P., & Chouteau, M. (2003). 3D gravity inversion using a model of parameter covariance. Journal of Applied Geophysics, 52(1), 59–74.CrossRefGoogle Scholar
  14. Chen, J., Hubbard, S., Peterson, J., Williams, K., Fienen, M., Jardine, P., & Watson, D. (2006). Development of a joint hydrogeophysical inversion approach and application to a contaminated fractured aquifer. Water Resources Research, 42(6), W06425.Google Scholar
  15. Chen, Y., Peng, Z., & Zhou, T. (2010). LSQR iterative common symmetric solutions to matrix equations AXB = E and CXD = F. Applied Mathematics and Computation, 217(1), 230–236.CrossRefGoogle Scholar
  16. Colombo, D., Mantovani, M., De Stefano, M., Garrad, D., Al Lawati, H., & Geosystem, S. R. L. (2007). Simultaneous joint inversion of seismic and gravity data for long offset pre-stack depth migration in Northern Oman. Calgary: CSEG.Google Scholar
  17. Fregoso, E., & Gallardo, L. A. (2009). Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 74(4), L31–L42.CrossRefGoogle Scholar
  18. Fullagar, P. K., & Pears, G. A. (2007). Towards geologically realistic inversion. Proceeding of Exploration, 7, 444–460.Google Scholar
  19. Gallardo, L. A. (2004). Joint two-dimensional inversion of geoelectromagnetic and seismic refraction data with cross-gradients constraint. Lancaster: University of Lancaster.Google Scholar
  20. Gallardo, L. A. (2007). Multiple cross-gradient joint inversion for geospectral imaging. Geophysical Research Letters, 34(19), L19301.CrossRefGoogle Scholar
  21. Gallardo, L. A., & Meju, M. A. (2003). Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 30(13), 1658.CrossRefGoogle Scholar
  22. Gallardo, L. A., & Meju, M. A. (2004). Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. Journal of Geophysical Research: Solid Earth, 109(B3), B03311 1–11.CrossRefGoogle Scholar
  23. Gallardo, L. A., & Meju, M. A. (2007). Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3), 1261–1272.CrossRefGoogle Scholar
  24. Gallardo-Delgado, L. A., Pérez-Flores, M. A., & Gómez-Treviño, E. (2003). A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics, 68(3), 949–959.CrossRefGoogle Scholar
  25. Grandis, H., & Dahrin, D. (2014). Constrained two-dimensional inversion of gravity data. Journal of Mathematical and Fundamental Sciences, 46(1), 1–13.CrossRefGoogle Scholar
  26. Guillen, A., Courrioux, G., Calcagno, P., Lane, R., Lees, T., & McInerney, P. (2004). Constrained gravity 3D litho-inversion applied to Broken Hill. ASEG Extended Abstracts, 2004(1), 1–6.CrossRefGoogle Scholar
  27. Guillen, A., & Menichetti, V. (1984). Gravity and magnetic inversion with minimization of a specific functional. Geophysics, 49(8), 1354–1360.CrossRefGoogle Scholar
  28. Haber, E., & Oldenburg, D. (1997). Joint inversion: A structural approach. Inverse Problems, 13(1), 63.CrossRefGoogle Scholar
  29. Jiang, M., Xia, L., Huang, W., Shou, G., Liu, F., & Crozier, S. (2009). The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem. Medical Engineering and Physics, 31(8), 979–985.CrossRefGoogle Scholar
  30. Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48(6), 713–721.CrossRefGoogle Scholar
  31. Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408.CrossRefGoogle Scholar
  32. Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119.CrossRefGoogle Scholar
  33. Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. (2006). Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12), W12404.CrossRefGoogle Scholar
  34. Lines, L. R., Schultz, A. K., & Treitel, S. (1988). Cooperative inversion of geophysical data. Geophysics, 53(1), 8–20.CrossRefGoogle Scholar
  35. Madankav. (2013). Report of geophysical investigation of Jalal Abad Iron mine (in persian), Madankav company.Google Scholar
  36. Morigi, S., & Sgallari, F. (2001). A regularizing L-curve Lanczos method for underdetermined linear systems. Applied Mathematics and Computation, 121(1), 55–73.CrossRefGoogle Scholar
  37. Nath, S. K., Shahid, S., & Dewangan, P. (2000). SEISRES—a visual C++ program for the sequential inversion of seismic refraction and geoelectric data. Computers and Geosciences, 26(2), 177–200.CrossRefGoogle Scholar
  38. Nelson, K. D., Zhao, W., Brown, L. D., & Kuo, J. (1996). Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274(5293), 1684.CrossRefGoogle Scholar
  39. Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1), 43–71.CrossRefGoogle Scholar
  40. Portniaguine, O., & Zhdanov, M. S. (1999). Focusing geophysical inversion images. Geophysics, 64(3), 874–887.CrossRefGoogle Scholar
  41. Portniaguine, O., & Zhdanov, M. S. (2002). 3-D magnetic inversion with data compression and image focusing. Geophysics, 67(5), 1532–1541.CrossRefGoogle Scholar
  42. Rao, D. B., & Babu, N. R. (1991). A rapid method for three-dimensional modeling of magnetic anomalies. Geophysics, 56(11), 1729–1737.CrossRefGoogle Scholar
  43. Rao, D. B., Prakash, M. J., & Babu, N. R. (1990). 3D and 2.5D modelling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38(4), 411–422.CrossRefGoogle Scholar
  44. Rezaie, M., Moradzadeh, A., & Nejati Kalate, A. (2017a). 3D gravity data-space inversion with sparseness and bound constraints. Journal of Mining and Environment, 8(2), 227–235.Google Scholar
  45. Rezaie, M., Moradzadeh, A., & Nejati Kalate, A. (2017b). Fast 3D inversion of gravity data using solution space prior conditioned lanczos bidiagonalization. Journal of Applied Geophysics, 136, 42–50.CrossRefGoogle Scholar
  46. Rezaie, M., Moradzadeh, A., Nejati Kalate, A., & Aghajani, H. (2016). Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure and Applied Geophysics, 174, 359–374.CrossRefGoogle Scholar
  47. Shamsipour, P., Marcotte, D., & Chouteau, M. (2012). 3D stochastic joint inversion of gravity and magnetic data. Journal of Applied Geophysics, 79, 27–37.CrossRefGoogle Scholar
  48. Silva Dias, F. J., Barbosa, V. C., & Silva, J. B. (2009). 3D gravity inversion through an adaptive-learning procedure. Geophysics, 74(3), I9–I21.CrossRefGoogle Scholar
  49. Tarantola, A., & Valette, B. (1982). Generalized non-linear inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics, 20, 219–232.CrossRefGoogle Scholar
  50. Toushmalani, R., & Saibi, H. (2015). Fast 3D inversion of gravity data using Lanczos bidiagonalization method. Arabian Journal of Geosciences, 8(7), 4969–4981.CrossRefGoogle Scholar
  51. Van Overmeeren, R. A. (1981). A combination of electrical resistivity, seismic refraction, and gravity measurements for groundwater exploration in Sudan. Geophysics, 46(9), 1304–1313.CrossRefGoogle Scholar
  52. van Zon, T., & Roy-Chowdhury, K. (2006). Structural inversion of gravity data using linear programming. Geophysics, 71(3), J41–J50.CrossRefGoogle Scholar
  53. Vatankhah, S., Ardestani, V. E., & Renaut, R. A. (2014). Automatic estimation of the regularization parameter in 2D focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran. Journal of Geophysics and Engineering, 11(4), 45001.CrossRefGoogle Scholar
  54. Vozoff, K., & Jupp, D. L. B. (1975). Joint inversion of geophysical data. Geophysical Journal International, 42(3), 977–991.CrossRefGoogle Scholar
  55. Wang, X., Lin, Z., & Chen, Z. (2014). Augmented Lanczos bidiagonalization by small singular value decompositions for face recognition and image compression. Optik-International Journal for Light and Electron Optics, 125(16), 4411–4416.CrossRefGoogle Scholar
  56. Williams, N. (2008). Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew–Wiluna greenstone belt. Western Australia: University of British Columbia.Google Scholar
  57. Zhang, J., & Morgan, F. D. (1997). Joint seismic and electrical tomography. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1997 (pp. 391–396). Society of Exploration Geophysicists.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Farshad Joulidehsar
    • 1
  • Ali Moradzadeh
    • 1
    Email author
  • Faramarz Doulati Ardejani
    • 1
  1. 1.School of Mining Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations