Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3569–3589 | Cite as

Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India)

  • Kapil Mohan
  • Peush Chaudhary
  • G. Pavan Kumar
  • Girish Ch. Kothyari
  • Virender Choudhary
  • Mehul Nagar
  • Pruthul Patel
  • Drasti Gandhi
  • Dilip Kushwaha
  • B. K. Rastogi
Article
  • 148 Downloads

Abstract

Magnetotelluric (MT) data have been acquired at 40 locations in Tuwa and its surrounding region (200 km east of Ahmedabad and 15 km north–northwest of Godhra) in the Mainland Gujarat with an average station spacing of 1.5 km. MT impedance tensors have been estimated in the period range of 0.001–100 s. The data have been modeled using non-linear conjugate gradient scheme taking both apparent resistivity and phase into account. From the 2D models of the MT data, the weathered granite with Quaternary sediments (with resistivity of < 700 Ω m) have been inferred up to a depth of 500 m followed by Godhra granite (having resistivity up to 105 Ω m) with a thickness 6.5 km. The Aravalli supergroup has been inferred below Godhra granite. The Lunavada group of rocks have been inferred in the eastern part of the study area (having resistivity value ranging from 103 to 104 Ω m) separated from the Godhra granite by a contact zone. The comparatively very low-resistivity rocks (< 400 Ω m) of Udaipur formation followed by Paleoproterozoic carbonate rocks with fluid have been inferred below 8–10 km depth. The percolation of water from the surface through the contact zone of Lunavada and Champaner groups has been suggested. The presence of hot water springs in 10 km SW from the center of the study area (at the contact zone of Godhra granite and basalt) might be due to the western trending lithostratigraphic slope, hydrostatic pressure generated due to heat produced from interaction of water with the carbonate rocks at deeper depth and high subsurface temperature due to high geothermal gradient. The segmented nature of Himmatnagar Fault (HnF) is identified in the central portion of the study area.

Keywords

Magnetotellurics Himmatnagar Fault Godhra granite geothermal spring 

Notes

Acknowledgements

The authors are thankful to the Director General, Institute of Seismological Research (ISR) for his permissions to publish the present work. Authors are also thankful to Gujarat Power Corporation Limited (GPCL) for providing fund to conduct this study.

Supplementary material

24_2018_1883_MOESM1_ESM.doc (4.3 mb)
Supplementary material 1 (DOC 4413 kb)
24_2018_1883_MOESM2_ESM.doc (7.7 mb)
Supplementary material 2 (DOC 7868 kb)

References

  1. Anon. (1980). Low rise buildings on Shrinkable clay Soils (p. 8), Part 3. Building Research Establishment, Digest 240, HMSO, London.Google Scholar
  2. Anon, (1999). Code of practice on site investigations, BS 5930. London: British Standards Institution.Google Scholar
  3. Becken, M., & Burkhardt, H. (2004). An ellipticity criterion in magnetotelluric tensor analysis. Geophysical Journal International, 159, 69–82.CrossRefGoogle Scholar
  4. Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W., & Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. Journal of Geophysical Research, 107(B5), 2096.  https://doi.org/10.1029/2001JB000391.CrossRefGoogle Scholar
  5. Chandra, P. K., & Chowdhary, L. R. (1969). Stratigraphy of Cambay Basin. Bulletin of Oil and Natural Gas Commission, 6(2), 37–50.Google Scholar
  6. Chandrasekhar, V., & Chandrasekharam, D. (2009). Geothermal systems in India. Geothermal Resources Council Transactions, 33, 607–610.Google Scholar
  7. Chopra, S., Chang, T., Saikia, S., Yadav, R. B. S., Choudhury, P., & Roy, K. S. (2014). Crustal structure of the Gujarat region, India: New constraints from the analysis of teleseismic receiver functions. Journal of Asian Earth Sciences, 96, 237–254.CrossRefGoogle Scholar
  8. Danda, N., Rao, C. K., & Kumar, A. (2017). Geoelectric structure of northern Cambay rift basin from magnetotelluric data. Earth Planets and Space Published Online, 69, 140.  https://doi.org/10.1186/s40623-017-0725-0.CrossRefGoogle Scholar
  9. Gokarn, S. G., Rao, C. K., Gupta, G., Singh, B. P., & Yamashita, M. (2001). Deep crustal structure in central India using magnetotelluric studies. Geophysical Journal International, 144, 685–694.CrossRefGoogle Scholar
  10. Gopalan, K., Trivedi, J. R., Merh, S. S., Patel, P. P., & Patel, S. G. (1979). Rb–Sr age of Godhra and related granites, Gujarat, India. Proceedings Indian Academy of Science, 88 A(II (1)), 7–17.Google Scholar
  11. Groom, R. W., & Bailey, R. C. (1989). Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94, 1913–1925.CrossRefGoogle Scholar
  12. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, B. P., Sahai, T. N., & Sharma, S. B. (1995). Geological map of the Precambrians of the Aravalli region, Southern Rajasthan and northeast Gujarat. Hyderabad: Geological Survey of India publication.Google Scholar
  13. Gupta, S. N., Mathur, R. K., & Arora, Y. K. (1992). Lithostratigraphy of proterozoic rocks of Rajasthan and Gujarat—a review. Records of Geological Survey of India, 111, 63–85.Google Scholar
  14. Hansen, P. C. (1998). Rank deficient and discrete Ill: Posed problems, numerical aspects of linear inversion (p. 247). Philadelphia: SIAM.CrossRefGoogle Scholar
  15. Hansen, P. C., & O’Leary, D. P. (1993). The use of the L-Curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14(6), 1487–1503.  https://doi.org/10.1137/0914086.CrossRefGoogle Scholar
  16. Israil, M., Tyagi, D. K., Gupta, P. K., & Niwas, Sri. (2008). Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India. Journal of Earth System Science, 117, 189–200.CrossRefGoogle Scholar
  17. Kaila, K. L., Murty, P. R. K., & Mall, D. M. (1989). The evolution of Vindhyan basin vis-à-vis the Narmada Son lineament, India from deep seismic soundings. Tectonophysics, 162, 271–289.CrossRefGoogle Scholar
  18. Kaila, K. L., Reddy, P. R., Dixit, M. M., & Koteshwara Rao, P. (1985). Crustal structure Across Narmada-Son Lineament, Central India from deep Seismic Sounding. Journal of the Geological Society of India, 26, 465–480.Google Scholar
  19. Ledo, J., Jones, A. G., Ferguson, I. J., & Wolynec, L. (2004). Lithospheric structure of the Yukon, northern Canadian Cordillera, obtained from magnetotelluric data. Journal of Geophysical Research, 109, B04410.  https://doi.org/10.1029/2003jb002516.CrossRefGoogle Scholar
  20. Mamtani, M. A., Karnakar, B., & Merh, S. S. (2002). Evidence of polyphase deformation in gneissic rocks around Devgadh Bariya: Implication for evolution of Godhra Granite. Gondwana Research, 5, 401–408.CrossRefGoogle Scholar
  21. McNeice, G. W., & Jones, A. G. (2001). Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66, 158–173.CrossRefGoogle Scholar
  22. Mehr, S. S. (1995). Geology of Gujarat (p. 222). Bangalore: Geological Society of India.Google Scholar
  23. Mohan, K., Pavan Kumar, G., Chaudhary, P., Choudhary, V. K., Nagar, M., Kushwa, D., et al. (2017). Magnetotelluric investigations to Identify Geothermal source zone near Chabsar hotwater spring Site, Ahmedabad, Gujarat, Northwest India. Geothermics, 65, 198–209.  https://doi.org/10.2016/j.geothermics.2016.10.001.CrossRefGoogle Scholar
  24. Mohan, K., Rastogi, B. K., & Chaudhary, P. (2015). Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake. Journal of Asian Earth Sciences, 98, 75–84.CrossRefGoogle Scholar
  25. Naganjaneyulu, K. (2010). Granitic and magmatic bodies in the deep crust of the Son Narmada Region, Central India: Constraints from seismic, gravity and magnetotelluric methods. Earth Planets and Space, 62, 863–868.CrossRefGoogle Scholar
  26. Naganjaneyulu, K., Naidu, G. D., Someswara Rao, M., Ravi Shankar, K., Kishore, S. R. K., Murthy, D. N., et al. (2011). Deep crustal electromagnetic structure of central India tectonic zone and its Implications. Physics of the Earth and Planetary Interiors, 181, 60–68.CrossRefGoogle Scholar
  27. Naidu, D. G., Veeraswamy, K., & Harinarayana, T. (2011). Electrical signatures of the Earth’s crust in central India as inferred from magnetotelluric study. Earth Planets and Space, 63, 1175–1182.CrossRefGoogle Scholar
  28. Patro, B. P. K., Harinarayana, T., Sastry, R. S., Rao, Madhusudan, Manoj, C., Naganjaneyulu, K., et al. (2005). Electrical imaging of Narmada–Son lineament zone, central India from magnetotellurics. Physics of the Earth and Planetary Interiors, 148, 215–232.CrossRefGoogle Scholar
  29. Raj, R. (2007). Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India. Journal of Earth System Science, 116(5), 413–421.CrossRefGoogle Scholar
  30. Rao, C. K., Ogawa, Y., Gokarn, S. G., & Gupta, G. (2004). Electromagnetic imaging of magma across the Narmada Son lineament, central India. Earth Planets and Space, 56, 229–238.CrossRefGoogle Scholar
  31. Reynolds, J. M. (1997). An introduction to applied and environmental geophysics (p. 796). New York: Wiley.Google Scholar
  32. Rodi, W., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion. Geophysics, 66, 174–187.CrossRefGoogle Scholar
  33. Rodriguez, B.D., & Sawyer, D.A. (2013). Geophysical constraints on Rio Grande rift structure and stratigraphy from magnetotelluric models and borehole resistivity logs, northern New Mexico. In: M. R. Hudson, V. J. S. Grauch (Eds.) New perspectives on Rio Grande Rift Basins: From tectonics to groundwater: Geological Society of America Special Paper, vol. 494, pp. 323–344.Google Scholar
  34. Singh, H.K., & Chandrasekharam, D. (2010). Evaluation of Tuwa geothermal system through water–rock interaction experiment. In: Proceedings of 13th international conference on water–rock interaction, Guanajuato, Mexico, pp. 181–183.Google Scholar
  35. Singh, A. P., & Meissner, R. (1995). Crustal configuration of the Narmada-Tapti region (India) from gravity studies. Journal of Geodynamics, 20, 111–127.CrossRefGoogle Scholar
  36. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (p. 522). Cambridge: Cambridge University Press.Google Scholar
  37. Tewari, H. C., & Kumar, P. (2003). Deep seismic sounding studies in India and its tectonic implications. Journal of the Virtual Explorer, 12, 30–54.CrossRefGoogle Scholar
  38. Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed., p. 656). Hoboken: Wiley.Google Scholar
  39. Verma, R. K., & Banerjee, P. (1992). Nature of continental crust along the Narmada Son lineament inferred from gravity and deep seismic sounding data. Tectonophysics, 202, 375–397.CrossRefGoogle Scholar
  40. Wani, M. R., & Kundu, J. (1995). Tectonostratigraphic Analysis in Cambay rift basin, India: Leads for future exploration. In: Proceedings of PETROTEC conf., technology trends in petroleum industry, New Delhi, pp. 147-164.Google Scholar
  41. Young, C. T., & Rogers, J. C. (1985). Resistivity models of the Bell Creek Granite, Michigan determined by the magnetotelluric method. Journal of Geophysical Research, 90(B14), 12557.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kapil Mohan
    • 1
  • Peush Chaudhary
    • 1
  • G. Pavan Kumar
    • 1
  • Girish Ch. Kothyari
    • 1
  • Virender Choudhary
    • 1
  • Mehul Nagar
    • 1
  • Pruthul Patel
    • 1
  • Drasti Gandhi
    • 1
  • Dilip Kushwaha
    • 1
  • B. K. Rastogi
    • 1
  1. 1.Institute of Seismological ResearchGandhinagarIndia

Personalised recommendations