Advertisement

Contemporary Crustal Deformation Within the Pamir Plateau Constrained by Geodetic Observations and Focal Mechanism Solutions

  • Zhengyang Pan
  • Jiankun He
  • Jun Li
Article

Abstract

We used an updated data set of 192 GPS-derived surface velocities and 393 earthquake focal mechanisms (Mw > 3.0, hypocenter depths < 30 km) to evaluate the spatial variations in the surface strain rate and crustal stress regime throughout the Pamir Plateau and its surrounding regions. The strain rate field was estimated using the spline in tension approach that solves for the surface velocity in a rectangular grid and the stress field was predicted from focal mechanism solutions using the damped regional-scale stress inversion (DRSSI) method of Hardebeck and Michael (Journal of Geophysical Research,  https://doi.org/10.1029/2005jb004144, 2006). The results show that the crustal stress field around the Pamir Plateau is predominantly characterized by NNW–SSE compression and E–W extension, which is consistent with the principal orientations of the two-dimensional surface strain rate tensor. This agreement supports the notion that the Pamir and southwestern Tien Shan are uniformly strained blocks. In particular, the fan-shaped rotational pattern between \({\text{Shmax}}\) and the strain rate from the western Pamir to the Tajik Basin shows that the counterclockwise rotation of the \({\text{Shmax}}\) orientation is associated with vertical deformation, which is consistent with the idea of Schurr et al. (Tectonics 33(8):2014TC003576, 2014) concerning the gravitational collapse and westward extrusion of the crust in the western Pamir. We propose that such a stress–strain pattern, dominated by NNW–ESE oriented compression and E–W trending extension, originated from a combination of the northward push of the Indian continent and the southward subduction of the Tien Shan.

Keywords

Focal mechanism geodetic strain active deformation Pamir Plateau India–Eurasia collision 

Abbreviations

DRSSI

Damped regional-scale stress inversion

\(\dot{e}\hbox{min}\)

The maximum shortening strain rate axis

GPS

Global positioning system

\({\text{Shmax}}\)

Horizontal maximum principal stress

MPT

The main Pamir thrust

GCMT

Global Centroid Moment Tensor catalog

CNSN

China National Seismic Network

CAP

Cut-and-paste method

Notes

Acknowledgements

The authors are very grateful to the editor of Pure and Applied Geophysics and three anonymous reviewers for their constructive reviews that have significantly improved to the manuscript. This work was jointly supported by the National Natural Science Foundation of China (NSFC; Grant numbers 41030320, 41274064). We thank the Data Management Center of China National Seismic Network at Institute of Geophysics, China Earthquake Administration for providing Waveform data for this study. All of figures in this manuscript were prepared with Generic Mapping Tools (GMT) (Wessel et al. 2013).

Supplementary material

24_2018_1872_MOESM1_ESM.txt (20 kb)
Supplementary material 1 (TXT 20 kb)
24_2018_1872_MOESM2_ESM.txt (11 kb)
Supplementary material 2 (TXT 11 kb)

References

  1. Álvarez-Gómez, J. A. (2014). FMC: A one-liner Python program to manage, classify and plot focal mechanisms. In EGU General Assembly Conference Abstracts, (Vol. 16, pp. 10887).Google Scholar
  2. Anderson, E. M. (1951). The dynamics of faulting and dyke formation with applications to Britain (Vol. 206). Edinburgh: Oliver and Boyd.Google Scholar
  3. Babaev, A., Ischuk, A., & Negmatullaev, S. (2005). Seismic conditions of the territory of Tajikistan. Publication of the International University of Tajikistan 93.Google Scholar
  4. Balfour, N. J., Cassidy, J. F., Dosso, S. E., & Mazzotti, S. (2011). Mapping crustal stress and strain in southwest British Columbia. Journal of Geophysical Research Solid Earth.  https://doi.org/10.1029/2010jb008003.Google Scholar
  5. Blayney, T., Najman, Y., Dupont-Nivet, G., Carter, A., Miller, I., Garzanti, E., et al. (2016). Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim Basin sedimentary record. Tectonics.  https://doi.org/10.1002/2016TC004222.Google Scholar
  6. Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109–117.CrossRefGoogle Scholar
  7. Bufe, A., Bekaert, D. P. S., Hussain, E., Bookhagen, B., Burbank, D. W., Thompson Jobe, J. A., et al. (2017). Temporal changes in rock-uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data. Geophysical Research Letters.  https://doi.org/10.1002/2017GL073627.Google Scholar
  8. Burtman, V. S. (2013). The geodynamics of the Pamir-Punjab syntaxis. Geotectonics, 47(1), 31–51.  https://doi.org/10.1134/S0016852113010020.CrossRefGoogle Scholar
  9. Burtman, V. S., & Molnar, P. (1993). Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America Special Papers, 281, 1–76.CrossRefGoogle Scholar
  10. Calais, E., & Stein, S. (2009). Time-variable deformation in the New Madrid Seismic zone. Science, 323(5920), 1442.CrossRefGoogle Scholar
  11. Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., & Yu, S.-B. (2003). Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1–2), 115–127.  https://doi.org/10.1016/S0012-821X(03)00360-1.CrossRefGoogle Scholar
  12. Chatelain, J. L., Roecker, S. W., Hatzfeld, D., & Molnar, P. (1980). Microearthquake seismicity and fault plane solutions in the Hindu Kush Region and their tectonic implications. Journal of Geophysical Research: Solid Earth, 85(B3), 1365–1387.  https://doi.org/10.1029/JB085iB03p01365.CrossRefGoogle Scholar
  13. Chen, J. (2011). Late Cenozoic and present tectonic deformation in the Pamir salient, Northwestern China. Seismology & Geology, 33(2), 241–259 (in Chinese with English abstract).Google Scholar
  14. Chevalier, M.-L., Leloup, P. H., Li, H., et al. (2016). Comment on “No late Quaternary strike-slip motion along the northern Karakoram fault” published by Robinson, in EPSL, 2015. Earth and Planetary Science Letters, 443, 216–219.  https://doi.org/10.1016/j.epsl.2016.03.031.CrossRefGoogle Scholar
  15. Chevalier, M.-L., Li, H., Pan, J., Pei, J., Wu, F., Xu, W., et al. (2011a). Fast slip-rate along the northern end of the Karakorum fault system, western Tibet. Geophysical Research Letters, 38(22), L22309.  https://doi.org/10.1029/2011GL049921.CrossRefGoogle Scholar
  16. Chevalier, M., Tapponnier, P., Van der Woerd, J., Ryerson, F., Finkel, R., & Li, H. (2011b). Karakorum fault slip-rate seems to be constant along strike over the last 200 ka. Journal of Himalayan Earth Sceinces, 44(1), 7.Google Scholar
  17. Cowgill, E. (2009). Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1–2), 145–161.  https://doi.org/10.1130/b26520.1.Google Scholar
  18. Cowgill, E. (2010). Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1–2), 145–161.CrossRefGoogle Scholar
  19. DeMets, C. (1992). A test of present-day plate geometries for northeast Asia and Japan. Journal of Geophysical Research: Solid Earth, 97(B12), 17627–17635.  https://doi.org/10.1029/92JB01335.CrossRefGoogle Scholar
  20. Ducea, M. N., Lutkov, V., Minaev, V. T., Hacker, B., Ratschbacher, L., Luffi, P., et al. (2003). Building the Pamirs: The view from the underside. Geology, 31(10), 849.CrossRefGoogle Scholar
  21. England, P., & Houseman, G. (1985). Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions. Nature, 315(6017), 297–301.  https://doi.org/10.1038/315297a0.CrossRefGoogle Scholar
  22. Fan, G., Ni, J. F., & Wallace, T. C. (1994). Active tectonics of the Pamirs and Karakorum. Journal of Geophysical Research, 99(B4), 7131.  https://doi.org/10.1029/93jb02970.CrossRefGoogle Scholar
  23. Frohlich, C. (1992). Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75(1), 193–198.  https://doi.org/10.1016/0031-9201(92)90130-N.CrossRefGoogle Scholar
  24. Hackl, M., Malservisi, R., & Wdowinski, S. (2009). Strain rate patterns from dense GPS networks. Natural Hazards and Earth System Sciences, 9(4), 1177–1187.CrossRefGoogle Scholar
  25. Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research.  https://doi.org/10.1029/2005jb004144.Google Scholar
  26. Herring, T. A., King, R. W., & McClusky, S. C. (2010). GLOBK reference manual. Global Kalman filter VLBI and GPS analysis program. Release 10.4. Massachussetts Institute Technology.Google Scholar
  27. Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1–2), 4–18.  https://doi.org/10.1016/j.tecto.2008.11.016.CrossRefGoogle Scholar
  28. Ischuk, A., Bendick, R., Rybin, A., Molnar, P., Khan, S. F., Kuzikov, S., et al. (2013). Kinematics of the Pamir and Hindu Kush regions from GPS geodesy. Journal of Geophysical Research: Solid Earth, 118(5), 2408–2416.  https://doi.org/10.1002/jgrb.50185.Google Scholar
  29. Jay, C. N., Flesch, L. M., & Bendick, R. O. (2017). Kinematics and dynamics of the Pamir, Central Asia: Quantifying surface deformation and force balance in an intracontinental subduction zone. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2017jb014177.Google Scholar
  30. Käßner, A., Ratschbacher, L., Jonckheere, R., Enkelmann, E., Khan, J., Sonntag, B.-L., et al. (2016). Cenozoic intra-continental deformation and exhumation at the northwestern tip of the India-Asia collision—southwestern Tian Shan, Tajikistan and Kyrgyzstan. Tectonics.  https://doi.org/10.1002/2015TC003897.Google Scholar
  31. Kaverina, A. N., Lander, A. V., & Prozorov, A. G. (1996). Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophysical Journal International, 125(1), 249–265.CrossRefGoogle Scholar
  32. Keiding, M., Lund, B., & Árnadóttir, T. (2009). Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1029/2008jb006253.Google Scholar
  33. Khan, P. K. (2003). Stress state, seismicity and subduction geometries of the descending lithosphere below the Hindukush and Pamir. Gondwana Research, 6(4), 867–877.  https://doi.org/10.1016/S1342-937X(05)71031-5.CrossRefGoogle Scholar
  34. Kostrov, V. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock. Physics of the Solid Earth, 1, 13–21. (citeulike-article-id: 236270).Google Scholar
  35. Koulakov, I., & Sobolev, S. V. (2006). A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region. Geophysical Journal International, 164(2), 425–440.  https://doi.org/10.1111/j.1365-246X.2005.02841.x.CrossRefGoogle Scholar
  36. Kulikova, G., Schurr, B., Krüger, F., Brzoska, E., & Heimann, S. (2016). Source parameters of the Sarez Pamir earthquake of February 18, 1911. Geophysical Journal International, 205(2), 1086–1098.  https://doi.org/10.1093/gji/ggw069.CrossRefGoogle Scholar
  37. Landgraf, A., Dzhumabaeva, A., Abdrakhmatov, K. E., Strecker, M. R., Macaulay, E. A., Arrowsmith, J. R., et al. (2016). Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan Kyrgyzstan. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2015jb012714.Google Scholar
  38. Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1. 0-A 1-degree global model of Earth’s crust. Geophys Res, 15, 2658. (Abstracts).Google Scholar
  39. Li, T., Chen, J., Thompson, J. A., Burbank, D. W., & Xiao, W. (2012). Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir frontal thrust. Geophysical Research Letters.  https://doi.org/10.1029/2012gl051782.Google Scholar
  40. Lukk, A. A., Yunga, S. L., Shevchenko, V. I., & Hamburger, M. W. (1995). Earthquake focal mechanisms, deformation state, and seismotectonics of the Pamir-Tien Shan region, Central Asia. Journal of Geophysical Research: Solid Earth, 100(B10), 20321–20343.  https://doi.org/10.1029/95JB02158.CrossRefGoogle Scholar
  41. Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3), 1328–1335.  https://doi.org/10.1111/j.1365-246X.2007.03468.x.CrossRefGoogle Scholar
  42. Luo, Y., Ni, S., Zeng, X., Zheng, Y., Chen, Q., & Chen, Y. (2010). A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science China Earth Sciences, 53(11), 1655–1664.  https://doi.org/10.1007/s11430-010-4026-8.CrossRefGoogle Scholar
  43. Luo, Y., Zhao, L., Zeng, X., & Gao, Y. (2015). Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Sciences, 58(7), 1148–1158.  https://doi.org/10.1007/s11430-014-5017-y.CrossRefGoogle Scholar
  44. Marrett, R., & Peacock, D. C. P. (1999). Strain and stress. Journal of Structural Geology, 21(8–9), 1057–1063.  https://doi.org/10.1016/S0191-8141(99)00020-6.CrossRefGoogle Scholar
  45. McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591–601.Google Scholar
  46. Mechie, J., Yuan, X., Schurr, B., Schneider, F., Sippl, C., Ratschbacher, L., et al. (2012). Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophysical Journal International, 188(2), 385–407.  https://doi.org/10.1111/j.1365-246X.2011.05278.x.CrossRefGoogle Scholar
  47. Mohadjer, S., Bendick, R., Ischuk, A., Kuzikov, S., Kostuk, A., Saydullaev, U., et al. (2010). Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. Geophysical Research Letters.  https://doi.org/10.1029/2009gl041737.Google Scholar
  48. Murphy, M. A., Yin, A., Kapp, P., Harrison, T. M., Lin, D., & Guo, J. H. (2000). Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 28(5), 451–454.CrossRefGoogle Scholar
  49. Palano, M. (2015). On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophysical Journal International, 200(2), 969–985.  https://doi.org/10.1093/gji/ggu451.CrossRefGoogle Scholar
  50. Palano, M., Imprescia, P., & Gresta, S. (2013). Current stress and strain-rate fields across the Dead Sea fault system: Constraints from seismological data and GPS observations. Earth and Planetary Science Letters, 369–370, 305–316.  https://doi.org/10.1016/j.epsl.2013.03.043.CrossRefGoogle Scholar
  51. Qiao, X., Yu, P., Nie, Z., Li, J., Wang, X., Kuzikov, S. I., et al. (2017). The crustal deformation revealed by GPS and InSAR in the northwest corner of the Tarim Basin, Northwestern China. Pure and Applied Geophysics, 174(3), 1405–1423.  https://doi.org/10.1007/s00024-017-1473-6.CrossRefGoogle Scholar
  52. Reigber, C., Michel, G. W., Galas, R., Angermann, D., Klotz, J., Chen, J. Y., et al. (2001). New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters, 191(1–2), 157–165.CrossRefGoogle Scholar
  53. Rigo, A., Vernant, P., Feigl, K. L., Goula, X., Khazaradze, G., Talaya, J., et al. (2015). Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011. Geophysical Journal International, 201(2), 947–964.CrossRefGoogle Scholar
  54. Robinson, A. C. (2009). Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen. Earth and Planetary Science Letters, 279(1–2), 123–130.  https://doi.org/10.1016/j.epsl.2008.12.039.CrossRefGoogle Scholar
  55. Robinson, A. C., Yin, A., Manning, C. E., Harrison, T. M., Zhang, S.-H., & Wang, X.-F. (2004). Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geological Society of America Bulletin, 116(7), 953.  https://doi.org/10.1130/b25375.1.CrossRefGoogle Scholar
  56. Schmidt, J., Hacker, B. R., Ratschbacher, L., Stübner, K., Stearns, M., Kylander-Clark, A., et al. (2011). Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters, 312(3–4), 411–421.  https://doi.org/10.1016/j.epsl.2011.10.034.CrossRefGoogle Scholar
  57. Schneider, F. M., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Haberland, C., et al. (2013). Seismic imaging of subducting continental lower crust beneath the Pamir. Earth and Planetary Science Letters, 375, 101–112.  https://doi.org/10.1016/j.epsl.2013.05.015.CrossRefGoogle Scholar
  58. Schurr, B., Ratschbacher, L., Sippl, C., Gloaguen, R., Yuan, X., & Mechie, J. (2014). Seismotectonics of the Pamir. Tectonics, 33(8), 2014TC003576.  https://doi.org/10.1002/2014tc003576.CrossRefGoogle Scholar
  59. Schwab, M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lutkov, V., et al. (2004). Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4), TC4002.  https://doi.org/10.1029/2003tc001583.CrossRefGoogle Scholar
  60. Searle, M. P. (1996). Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: Implications for the limited extrusion of the Tibetan plateau. Tectonics, 15(1), 171–186.  https://doi.org/10.1029/95TC01693.CrossRefGoogle Scholar
  61. Sobel, E. R., Chen, J., Schoenbohm, L. M., Thiede, R., Stockli, D. F., Sudo, M., et al. (2013). Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth and Planetary Science Letters, 363, 204–218.  https://doi.org/10.1016/j.epsl.2012.12.009.CrossRefGoogle Scholar
  62. Sobel, E. R., & Dumitru, T. A. (1997). Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research: Solid Earth, 102(B3), 5043–5063.  https://doi.org/10.1029/96JB03267.CrossRefGoogle Scholar
  63. Sobel, E. R., Schoenbohm, L. M., Chen, J., Thiede, R., Stockli, D. F., Sudo, M., et al. (2011). Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth and Planetary Science Letters, 304(3–4), 369–378.  https://doi.org/10.1016/j.epsl.2011.02.012.CrossRefGoogle Scholar
  64. Stein, S., Liu, M., Calais, E., & Li, Q. (2009). Mid-continent earthquakes as a complex system. Seismological Research Letters, 80(4), 551–553.  https://doi.org/10.1785/gssrl.80.4.551.CrossRefGoogle Scholar
  65. Strecker, M. R., Frisch, W., Hamburger, M. W., Ratschbacher, L., Semiletkin, S., Samoruyev, A., et al. (1995). Quaternary deformation in the eastern Pamirs, Tajikistan and Kyrgyzstan. Tectonics, 14(5), 1061–1079.CrossRefGoogle Scholar
  66. Styron, R., Taylor, M., & Okoronkwo, K. (2010). Database of Active Structures From the Indo-Asian Collision. Eos, Transactions American Geophysical Union, 91(20), 181–182.  https://doi.org/10.1029/2010EO200001.CrossRefGoogle Scholar
  67. Sun, J., Xiao, W., Windley, B. F., Ji, W., Fu, B., Wang, J., et al. (2016). Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma. Tectonics, 35(2), 2015TC003974.  https://doi.org/10.1002/2015tc003974.CrossRefGoogle Scholar
  68. Talwani, P. (2016). On the nature of intraplate earthquakes. Journal of Seismology.  https://doi.org/10.1007/s10950-016-9582-8.Google Scholar
  69. Tang, L.-L., Zhao, C.-P., & Wang, H.-T. (2012). Study on the source characteristics of the 2008 M (s) 6.8 Wuqia, Xinjiang earthquake sequence and the stress field on the northeastern boundary of Pamir. Diqiu Wuli Xuebao, 55(4), 1228–1239.Google Scholar
  70. Teshebaeva, K., Sudhaus, H., Echtler, H., Schurr, B., & Roessner, S. (2014). Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake. Geophysical Journal International, 198(2), 760–774,  https://doi.org/10.1093/gji/ggu158.CrossRefGoogle Scholar
  71. Thompson, T. B., Plesch, A., Shaw, J. H., & Meade, B. J. (2015). Rapid slip-deficit rates at the eastern margin of the Tibetan Plateau prior to the 2008 Mw 7.9 Wenchuan earthquake. Geophysical Research Letters, 42(6), 1677–1684.  https://doi.org/10.1002/2014GL062833.CrossRefGoogle Scholar
  72. Townend, J., & Zoback, M. D. (2004). Regional tectonic stress near the San Andreas fault in central and southern California. Geophysical Research Letters.  https://doi.org/10.1029/2003gl018918.Google Scholar
  73. Townend, J., & Zoback, M. D. (2006). Stress, strain, and mountain building in central Japan. Journal of Geophysical Research, 111(B3).  https://doi.org/10.1029/2005jb003759.
  74. Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology, 59(2), 118–130.  https://doi.org/10.1086/625831.CrossRefGoogle Scholar
  75. Wessel, P., & Bercovici, D. (1998). Interpolation with splines in tension: A Green’s function approach. Mathematical Geology, 30(1), 77–93.CrossRefGoogle Scholar
  76. Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410.  https://doi.org/10.1002/2013EO450001.CrossRefGoogle Scholar
  77. Yang, W., & Hauksson, E. (2013). The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophysical Journal International, 194(1), 100–117.  https://doi.org/10.1093/gji/ggt113.CrossRefGoogle Scholar
  78. Yang, S., Li, J., & Wang, Q. (2008). The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations. Science in China, Series D: Earth Sciences, 51(8), 1064–1080.  https://doi.org/10.1007/s11430-008-0090-8.CrossRefGoogle Scholar
  79. Yin, A., Robinson, A., & Manning, C. E. (2001). Oroclinal bending and slab-break-off causing coeval east–west extension and east–west contraction in the Pamir-Nanga Parbat Syntaxis in the Past 10 m.y. Eos (Transactions, American Geophysical Union), 82, F1124.Google Scholar
  80. Yoshida, K., Hasegawa, A., & Okada, T. (2015). Spatial variation of stress orientations in NE Japan revealed by dense seismic observations. Tectonophysics, 647–648, 63–72.  https://doi.org/10.1016/j.tecto.2015.02.013.CrossRefGoogle Scholar
  81. Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of iran: insight from seismic and geodetic computations. Pure and Applied Geophysics, 171(7), 1219–1236.  https://doi.org/10.1007/s00024-013-0711-9.CrossRefGoogle Scholar
  82. Zhao, L.-S., & Helmberger, D. V. (1994). Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104.Google Scholar
  83. Zhao, B., Huang, Y., Zhang, C., Wang, W., Tan, K., & Du, R. (2015). Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geodesy and Geodynamics, 6(1), 7–15.  https://doi.org/10.1016/j.geog.2014.12.006.CrossRefGoogle Scholar
  84. Zhao, L., Luo, Y., Liu, T. Y., & Luo, Y. J. (2013). Earthquake focal mechanisms in yunnan and their inference on the regional stress field. Bulletin of the Seismological Society of America, 103(4), 2498–2507.CrossRefGoogle Scholar
  85. Zheng, X.-F., Ouyang, B., Zhang, D.-N., Yao, Z.-X., Liang, J.-H., & Zheng, J. (2009). Technical system construction of data backup centre for China seismograph network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics, 52(5), 1412–1417.Google Scholar
  86. Zheng, X.-F., Yao, Z.-X., Liang, J.-H., & Zheng, J. (2010). The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches. Bulletin of the Seismological Society of America, 100(5B), 2866–2872.CrossRefGoogle Scholar
  87. Zhou, Y., He, J., Oimahmadov, I., Gadoev, M., Pan, Z., Wang, W., et al. (2016). Present-day crustal motion around the Pamir Plateau from GPS measurements. Gondwana Research, 35, 144–154.  https://doi.org/10.1016/j.gr.2016.03.011.CrossRefGoogle Scholar
  88. Zhu, L., & Ben-Zion, Y. (2013). Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 194(2), 839–843.CrossRefGoogle Scholar
  89. Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641.Google Scholar
  90. Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.CrossRefGoogle Scholar
  91. Zubovich, A., Schöne, T., Metzger, S., Mosienko, O., Mukhamediev, S., Sharshebaev, A., et al. (2016). Tectonic interaction between the Pamir and Tien Shan observed by GPS. Tectonics, 35(2), 283–292.  https://doi.org/10.1002/2015TC004055.CrossRefGoogle Scholar
  92. Zubovich, A. V., Wang, X.-Q., Scherba, Y. G., Schelochkov, G. G., Reilinger, R., Reigber, C., et al. (2010). GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6), TC6014.  https://doi.org/10.1029/2010tc002772.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Department of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  4. 4.Second Monitoring and Application CenterChina Earthquake AdministrationXi’anChina

Personalised recommendations