Skip to main content
Log in

Contemporary Crustal Deformation Within the Pamir Plateau Constrained by Geodetic Observations and Focal Mechanism Solutions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We used an updated data set of 192 GPS-derived surface velocities and 393 earthquake focal mechanisms (Mw > 3.0, hypocenter depths < 30 km) to evaluate the spatial variations in the surface strain rate and crustal stress regime throughout the Pamir Plateau and its surrounding regions. The strain rate field was estimated using the spline in tension approach that solves for the surface velocity in a rectangular grid and the stress field was predicted from focal mechanism solutions using the damped regional-scale stress inversion (DRSSI) method of Hardebeck and Michael (Journal of Geophysical Research, https://doi.org/10.1029/2005jb004144, 2006). The results show that the crustal stress field around the Pamir Plateau is predominantly characterized by NNW–SSE compression and E–W extension, which is consistent with the principal orientations of the two-dimensional surface strain rate tensor. This agreement supports the notion that the Pamir and southwestern Tien Shan are uniformly strained blocks. In particular, the fan-shaped rotational pattern between \({\text{Shmax}}\) and the strain rate from the western Pamir to the Tajik Basin shows that the counterclockwise rotation of the \({\text{Shmax}}\) orientation is associated with vertical deformation, which is consistent with the idea of Schurr et al. (Tectonics 33(8):2014TC003576, 2014) concerning the gravitational collapse and westward extrusion of the crust in the western Pamir. We propose that such a stress–strain pattern, dominated by NNW–ESE oriented compression and E–W trending extension, originated from a combination of the northward push of the Indian continent and the southward subduction of the Tien Shan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DRSSI:

Damped regional-scale stress inversion

\(\dot{e}\hbox{min}\) :

The maximum shortening strain rate axis

GPS:

Global positioning system

\({\text{Shmax}}\) :

Horizontal maximum principal stress

MPT:

The main Pamir thrust

GCMT:

Global Centroid Moment Tensor catalog

CNSN:

China National Seismic Network

CAP:

Cut-and-paste method

References

  • Álvarez-Gómez, J. A. (2014). FMC: A one-liner Python program to manage, classify and plot focal mechanisms. In EGU General Assembly Conference Abstracts, (Vol. 16, pp. 10887).

  • Anderson, E. M. (1951). The dynamics of faulting and dyke formation with applications to Britain (Vol. 206). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Babaev, A., Ischuk, A., & Negmatullaev, S. (2005). Seismic conditions of the territory of Tajikistan. Publication of the International University of Tajikistan 93.

  • Balfour, N. J., Cassidy, J. F., Dosso, S. E., & Mazzotti, S. (2011). Mapping crustal stress and strain in southwest British Columbia. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2010jb008003.

    Article  Google Scholar 

  • Blayney, T., Najman, Y., Dupont-Nivet, G., Carter, A., Miller, I., Garzanti, E., et al. (2016). Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim Basin sedimentary record. Tectonics. https://doi.org/10.1002/2016TC004222.

    Article  Google Scholar 

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109–117.

    Article  Google Scholar 

  • Bufe, A., Bekaert, D. P. S., Hussain, E., Bookhagen, B., Burbank, D. W., Thompson Jobe, J. A., et al. (2017). Temporal changes in rock-uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data. Geophysical Research Letters. https://doi.org/10.1002/2017GL073627.

    Article  Google Scholar 

  • Burtman, V. S. (2013). The geodynamics of the Pamir-Punjab syntaxis. Geotectonics, 47(1), 31–51. https://doi.org/10.1134/S0016852113010020.

    Article  Google Scholar 

  • Burtman, V. S., & Molnar, P. (1993). Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America Special Papers, 281, 1–76.

    Article  Google Scholar 

  • Calais, E., & Stein, S. (2009). Time-variable deformation in the New Madrid Seismic zone. Science, 323(5920), 1442.

    Article  Google Scholar 

  • Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., & Yu, S.-B. (2003). Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1–2), 115–127. https://doi.org/10.1016/S0012-821X(03)00360-1.

    Article  Google Scholar 

  • Chatelain, J. L., Roecker, S. W., Hatzfeld, D., & Molnar, P. (1980). Microearthquake seismicity and fault plane solutions in the Hindu Kush Region and their tectonic implications. Journal of Geophysical Research: Solid Earth, 85(B3), 1365–1387. https://doi.org/10.1029/JB085iB03p01365.

    Article  Google Scholar 

  • Chen, J. (2011). Late Cenozoic and present tectonic deformation in the Pamir salient, Northwestern China. Seismology & Geology, 33(2), 241–259 (in Chinese with English abstract).

    Google Scholar 

  • Chevalier, M.-L., Leloup, P. H., Li, H., et al. (2016). Comment on “No late Quaternary strike-slip motion along the northern Karakoram fault” published by Robinson, in EPSL, 2015. Earth and Planetary Science Letters, 443, 216–219. https://doi.org/10.1016/j.epsl.2016.03.031.

    Article  Google Scholar 

  • Chevalier, M.-L., Li, H., Pan, J., Pei, J., Wu, F., Xu, W., et al. (2011a). Fast slip-rate along the northern end of the Karakorum fault system, western Tibet. Geophysical Research Letters, 38(22), L22309. https://doi.org/10.1029/2011GL049921.

    Article  Google Scholar 

  • Chevalier, M., Tapponnier, P., Van der Woerd, J., Ryerson, F., Finkel, R., & Li, H. (2011b). Karakorum fault slip-rate seems to be constant along strike over the last 200 ka. Journal of Himalayan Earth Sceinces, 44(1), 7.

    Google Scholar 

  • Cowgill, E. (2009). Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1–2), 145–161. https://doi.org/10.1130/b26520.1.

    Article  Google Scholar 

  • Cowgill, E. (2010). Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geological Society of America Bulletin, 122(1–2), 145–161.

    Article  Google Scholar 

  • DeMets, C. (1992). A test of present-day plate geometries for northeast Asia and Japan. Journal of Geophysical Research: Solid Earth, 97(B12), 17627–17635. https://doi.org/10.1029/92JB01335.

    Article  Google Scholar 

  • Ducea, M. N., Lutkov, V., Minaev, V. T., Hacker, B., Ratschbacher, L., Luffi, P., et al. (2003). Building the Pamirs: The view from the underside. Geology, 31(10), 849.

    Article  Google Scholar 

  • England, P., & Houseman, G. (1985). Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions. Nature, 315(6017), 297–301. https://doi.org/10.1038/315297a0.

    Article  Google Scholar 

  • Fan, G., Ni, J. F., & Wallace, T. C. (1994). Active tectonics of the Pamirs and Karakorum. Journal of Geophysical Research, 99(B4), 7131. https://doi.org/10.1029/93jb02970.

    Article  Google Scholar 

  • Frohlich, C. (1992). Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75(1), 193–198. https://doi.org/10.1016/0031-9201(92)90130-N.

    Article  Google Scholar 

  • Hackl, M., Malservisi, R., & Wdowinski, S. (2009). Strain rate patterns from dense GPS networks. Natural Hazards and Earth System Sciences, 9(4), 1177–1187.

    Article  Google Scholar 

  • Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research. https://doi.org/10.1029/2005jb004144.

    Article  Google Scholar 

  • Herring, T. A., King, R. W., & McClusky, S. C. (2010). GLOBK reference manual. Global Kalman filter VLBI and GPS analysis program. Release 10.4. Massachussetts Institute Technology.

  • Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1–2), 4–18. https://doi.org/10.1016/j.tecto.2008.11.016.

    Article  Google Scholar 

  • Ischuk, A., Bendick, R., Rybin, A., Molnar, P., Khan, S. F., Kuzikov, S., et al. (2013). Kinematics of the Pamir and Hindu Kush regions from GPS geodesy. Journal of Geophysical Research: Solid Earth, 118(5), 2408–2416. https://doi.org/10.1002/jgrb.50185.

    Article  Google Scholar 

  • Jay, C. N., Flesch, L. M., & Bendick, R. O. (2017). Kinematics and dynamics of the Pamir, Central Asia: Quantifying surface deformation and force balance in an intracontinental subduction zone. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2017jb014177.

    Article  Google Scholar 

  • Käßner, A., Ratschbacher, L., Jonckheere, R., Enkelmann, E., Khan, J., Sonntag, B.-L., et al. (2016). Cenozoic intra-continental deformation and exhumation at the northwestern tip of the India-Asia collision—southwestern Tian Shan, Tajikistan and Kyrgyzstan. Tectonics. https://doi.org/10.1002/2015TC003897.

    Article  Google Scholar 

  • Kaverina, A. N., Lander, A. V., & Prozorov, A. G. (1996). Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophysical Journal International, 125(1), 249–265.

    Article  Google Scholar 

  • Keiding, M., Lund, B., & Árnadóttir, T. (2009). Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2008jb006253.

    Article  Google Scholar 

  • Khan, P. K. (2003). Stress state, seismicity and subduction geometries of the descending lithosphere below the Hindukush and Pamir. Gondwana Research, 6(4), 867–877. https://doi.org/10.1016/S1342-937X(05)71031-5.

    Article  Google Scholar 

  • Kostrov, V. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock. Physics of the Solid Earth, 1, 13–21. (citeulike-article-id: 236270).

    Google Scholar 

  • Koulakov, I., & Sobolev, S. V. (2006). A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region. Geophysical Journal International, 164(2), 425–440. https://doi.org/10.1111/j.1365-246X.2005.02841.x.

    Article  Google Scholar 

  • Kulikova, G., Schurr, B., Krüger, F., Brzoska, E., & Heimann, S. (2016). Source parameters of the Sarez Pamir earthquake of February 18, 1911. Geophysical Journal International, 205(2), 1086–1098. https://doi.org/10.1093/gji/ggw069.

    Article  Google Scholar 

  • Landgraf, A., Dzhumabaeva, A., Abdrakhmatov, K. E., Strecker, M. R., Macaulay, E. A., Arrowsmith, J. R., et al. (2016). Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan Kyrgyzstan. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2015jb012714.

    Article  Google Scholar 

  • Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1. 0-A 1-degree global model of Earth’s crust. Geophys Res, 15, 2658. (Abstracts).

    Google Scholar 

  • Li, T., Chen, J., Thompson, J. A., Burbank, D. W., & Xiao, W. (2012). Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir frontal thrust. Geophysical Research Letters. https://doi.org/10.1029/2012gl051782.

    Article  Google Scholar 

  • Lukk, A. A., Yunga, S. L., Shevchenko, V. I., & Hamburger, M. W. (1995). Earthquake focal mechanisms, deformation state, and seismotectonics of the Pamir-Tien Shan region, Central Asia. Journal of Geophysical Research: Solid Earth, 100(B10), 20321–20343. https://doi.org/10.1029/95JB02158.

    Article  Google Scholar 

  • Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3), 1328–1335. https://doi.org/10.1111/j.1365-246X.2007.03468.x.

    Article  Google Scholar 

  • Luo, Y., Ni, S., Zeng, X., Zheng, Y., Chen, Q., & Chen, Y. (2010). A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science China Earth Sciences, 53(11), 1655–1664. https://doi.org/10.1007/s11430-010-4026-8.

    Article  Google Scholar 

  • Luo, Y., Zhao, L., Zeng, X., & Gao, Y. (2015). Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Sciences, 58(7), 1148–1158. https://doi.org/10.1007/s11430-014-5017-y.

    Article  Google Scholar 

  • Marrett, R., & Peacock, D. C. P. (1999). Strain and stress. Journal of Structural Geology, 21(8–9), 1057–1063. https://doi.org/10.1016/S0191-8141(99)00020-6.

    Article  Google Scholar 

  • McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591–601.

    Google Scholar 

  • Mechie, J., Yuan, X., Schurr, B., Schneider, F., Sippl, C., Ratschbacher, L., et al. (2012). Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophysical Journal International, 188(2), 385–407. https://doi.org/10.1111/j.1365-246X.2011.05278.x.

    Article  Google Scholar 

  • Mohadjer, S., Bendick, R., Ischuk, A., Kuzikov, S., Kostuk, A., Saydullaev, U., et al. (2010). Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. Geophysical Research Letters. https://doi.org/10.1029/2009gl041737.

    Article  Google Scholar 

  • Murphy, M. A., Yin, A., Kapp, P., Harrison, T. M., Lin, D., & Guo, J. H. (2000). Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 28(5), 451–454.

    Article  Google Scholar 

  • Palano, M. (2015). On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophysical Journal International, 200(2), 969–985. https://doi.org/10.1093/gji/ggu451.

    Article  Google Scholar 

  • Palano, M., Imprescia, P., & Gresta, S. (2013). Current stress and strain-rate fields across the Dead Sea fault system: Constraints from seismological data and GPS observations. Earth and Planetary Science Letters, 369–370, 305–316. https://doi.org/10.1016/j.epsl.2013.03.043.

    Article  Google Scholar 

  • Qiao, X., Yu, P., Nie, Z., Li, J., Wang, X., Kuzikov, S. I., et al. (2017). The crustal deformation revealed by GPS and InSAR in the northwest corner of the Tarim Basin, Northwestern China. Pure and Applied Geophysics, 174(3), 1405–1423. https://doi.org/10.1007/s00024-017-1473-6.

    Article  Google Scholar 

  • Reigber, C., Michel, G. W., Galas, R., Angermann, D., Klotz, J., Chen, J. Y., et al. (2001). New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters, 191(1–2), 157–165.

    Article  Google Scholar 

  • Rigo, A., Vernant, P., Feigl, K. L., Goula, X., Khazaradze, G., Talaya, J., et al. (2015). Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011. Geophysical Journal International, 201(2), 947–964.

    Article  Google Scholar 

  • Robinson, A. C. (2009). Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen. Earth and Planetary Science Letters, 279(1–2), 123–130. https://doi.org/10.1016/j.epsl.2008.12.039.

    Article  Google Scholar 

  • Robinson, A. C., Yin, A., Manning, C. E., Harrison, T. M., Zhang, S.-H., & Wang, X.-F. (2004). Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geological Society of America Bulletin, 116(7), 953. https://doi.org/10.1130/b25375.1.

    Article  Google Scholar 

  • Schmidt, J., Hacker, B. R., Ratschbacher, L., Stübner, K., Stearns, M., Kylander-Clark, A., et al. (2011). Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters, 312(3–4), 411–421. https://doi.org/10.1016/j.epsl.2011.10.034.

    Article  Google Scholar 

  • Schneider, F. M., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Haberland, C., et al. (2013). Seismic imaging of subducting continental lower crust beneath the Pamir. Earth and Planetary Science Letters, 375, 101–112. https://doi.org/10.1016/j.epsl.2013.05.015.

    Article  Google Scholar 

  • Schurr, B., Ratschbacher, L., Sippl, C., Gloaguen, R., Yuan, X., & Mechie, J. (2014). Seismotectonics of the Pamir. Tectonics, 33(8), 2014TC003576. https://doi.org/10.1002/2014tc003576.

    Article  Google Scholar 

  • Schwab, M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lutkov, V., et al. (2004). Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4), TC4002. https://doi.org/10.1029/2003tc001583.

    Article  Google Scholar 

  • Searle, M. P. (1996). Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: Implications for the limited extrusion of the Tibetan plateau. Tectonics, 15(1), 171–186. https://doi.org/10.1029/95TC01693.

    Article  Google Scholar 

  • Sobel, E. R., Chen, J., Schoenbohm, L. M., Thiede, R., Stockli, D. F., Sudo, M., et al. (2013). Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth and Planetary Science Letters, 363, 204–218. https://doi.org/10.1016/j.epsl.2012.12.009.

    Article  Google Scholar 

  • Sobel, E. R., & Dumitru, T. A. (1997). Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research: Solid Earth, 102(B3), 5043–5063. https://doi.org/10.1029/96JB03267.

    Article  Google Scholar 

  • Sobel, E. R., Schoenbohm, L. M., Chen, J., Thiede, R., Stockli, D. F., Sudo, M., et al. (2011). Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth and Planetary Science Letters, 304(3–4), 369–378. https://doi.org/10.1016/j.epsl.2011.02.012.

    Article  Google Scholar 

  • Stein, S., Liu, M., Calais, E., & Li, Q. (2009). Mid-continent earthquakes as a complex system. Seismological Research Letters, 80(4), 551–553. https://doi.org/10.1785/gssrl.80.4.551.

    Article  Google Scholar 

  • Strecker, M. R., Frisch, W., Hamburger, M. W., Ratschbacher, L., Semiletkin, S., Samoruyev, A., et al. (1995). Quaternary deformation in the eastern Pamirs, Tajikistan and Kyrgyzstan. Tectonics, 14(5), 1061–1079.

    Article  Google Scholar 

  • Styron, R., Taylor, M., & Okoronkwo, K. (2010). Database of Active Structures From the Indo-Asian Collision. Eos, Transactions American Geophysical Union, 91(20), 181–182. https://doi.org/10.1029/2010EO200001.

    Article  Google Scholar 

  • Sun, J., Xiao, W., Windley, B. F., Ji, W., Fu, B., Wang, J., et al. (2016). Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma. Tectonics, 35(2), 2015TC003974. https://doi.org/10.1002/2015tc003974.

    Article  Google Scholar 

  • Talwani, P. (2016). On the nature of intraplate earthquakes. Journal of Seismology. https://doi.org/10.1007/s10950-016-9582-8.

    Article  Google Scholar 

  • Tang, L.-L., Zhao, C.-P., & Wang, H.-T. (2012). Study on the source characteristics of the 2008 M (s) 6.8 Wuqia, Xinjiang earthquake sequence and the stress field on the northeastern boundary of Pamir. Diqiu Wuli Xuebao, 55(4), 1228–1239.

    Google Scholar 

  • Teshebaeva, K., Sudhaus, H., Echtler, H., Schurr, B., & Roessner, S. (2014). Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake. Geophysical Journal International, 198(2), 760–774, https://doi.org/10.1093/gji/ggu158.

    Article  Google Scholar 

  • Thompson, T. B., Plesch, A., Shaw, J. H., & Meade, B. J. (2015). Rapid slip-deficit rates at the eastern margin of the Tibetan Plateau prior to the 2008 Mw 7.9 Wenchuan earthquake. Geophysical Research Letters, 42(6), 1677–1684. https://doi.org/10.1002/2014GL062833.

    Article  Google Scholar 

  • Townend, J., & Zoback, M. D. (2004). Regional tectonic stress near the San Andreas fault in central and southern California. Geophysical Research Letters. https://doi.org/10.1029/2003gl018918.

    Article  Google Scholar 

  • Townend, J., & Zoback, M. D. (2006). Stress, strain, and mountain building in central Japan. Journal of Geophysical Research, 111(B3). https://doi.org/10.1029/2005jb003759.

    Article  Google Scholar 

  • Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology, 59(2), 118–130. https://doi.org/10.1086/625831.

    Article  Google Scholar 

  • Wessel, P., & Bercovici, D. (1998). Interpolation with splines in tension: A Green’s function approach. Mathematical Geology, 30(1), 77–93.

    Article  Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001.

    Article  Google Scholar 

  • Yang, W., & Hauksson, E. (2013). The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophysical Journal International, 194(1), 100–117. https://doi.org/10.1093/gji/ggt113.

    Article  Google Scholar 

  • Yang, S., Li, J., & Wang, Q. (2008). The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations. Science in China, Series D: Earth Sciences, 51(8), 1064–1080. https://doi.org/10.1007/s11430-008-0090-8.

    Article  Google Scholar 

  • Yin, A., Robinson, A., & Manning, C. E. (2001). Oroclinal bending and slab-break-off causing coeval east–west extension and east–west contraction in the Pamir-Nanga Parbat Syntaxis in the Past 10 m.y. Eos (Transactions, American Geophysical Union), 82, F1124.

    Google Scholar 

  • Yoshida, K., Hasegawa, A., & Okada, T. (2015). Spatial variation of stress orientations in NE Japan revealed by dense seismic observations. Tectonophysics, 647–648, 63–72. https://doi.org/10.1016/j.tecto.2015.02.013.

    Article  Google Scholar 

  • Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of iran: insight from seismic and geodetic computations. Pure and Applied Geophysics, 171(7), 1219–1236. https://doi.org/10.1007/s00024-013-0711-9.

    Article  Google Scholar 

  • Zhao, L.-S., & Helmberger, D. V. (1994). Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104.

    Google Scholar 

  • Zhao, B., Huang, Y., Zhang, C., Wang, W., Tan, K., & Du, R. (2015). Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geodesy and Geodynamics, 6(1), 7–15. https://doi.org/10.1016/j.geog.2014.12.006.

    Article  Google Scholar 

  • Zhao, L., Luo, Y., Liu, T. Y., & Luo, Y. J. (2013). Earthquake focal mechanisms in yunnan and their inference on the regional stress field. Bulletin of the Seismological Society of America, 103(4), 2498–2507.

    Article  Google Scholar 

  • Zheng, X.-F., Ouyang, B., Zhang, D.-N., Yao, Z.-X., Liang, J.-H., & Zheng, J. (2009). Technical system construction of data backup centre for China seismograph network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics, 52(5), 1412–1417.

    Google Scholar 

  • Zheng, X.-F., Yao, Z.-X., Liang, J.-H., & Zheng, J. (2010). The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches. Bulletin of the Seismological Society of America, 100(5B), 2866–2872.

    Article  Google Scholar 

  • Zhou, Y., He, J., Oimahmadov, I., Gadoev, M., Pan, Z., Wang, W., et al. (2016). Present-day crustal motion around the Pamir Plateau from GPS measurements. Gondwana Research, 35, 144–154. https://doi.org/10.1016/j.gr.2016.03.011.

    Article  Google Scholar 

  • Zhu, L., & Ben-Zion, Y. (2013). Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 194(2), 839–843.

    Article  Google Scholar 

  • Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641.

    Google Scholar 

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.

    Article  Google Scholar 

  • Zubovich, A., Schöne, T., Metzger, S., Mosienko, O., Mukhamediev, S., Sharshebaev, A., et al. (2016). Tectonic interaction between the Pamir and Tien Shan observed by GPS. Tectonics, 35(2), 283–292. https://doi.org/10.1002/2015TC004055.

    Article  Google Scholar 

  • Zubovich, A. V., Wang, X.-Q., Scherba, Y. G., Schelochkov, G. G., Reilinger, R., Reigber, C., et al. (2010). GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6), TC6014. https://doi.org/10.1029/2010tc002772.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor of Pure and Applied Geophysics and three anonymous reviewers for their constructive reviews that have significantly improved to the manuscript. This work was jointly supported by the National Natural Science Foundation of China (NSFC; Grant numbers 41030320, 41274064). We thank the Data Management Center of China National Seismic Network at Institute of Geophysics, China Earthquake Administration for providing Waveform data for this study. All of figures in this manuscript were prepared with Generic Mapping Tools (GMT) (Wessel et al. 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyang Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 20 kb)

Supplementary material 2 (TXT 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., He, J. & Li, J. Contemporary Crustal Deformation Within the Pamir Plateau Constrained by Geodetic Observations and Focal Mechanism Solutions. Pure Appl. Geophys. 175, 3463–3484 (2018). https://doi.org/10.1007/s00024-018-1872-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1872-3

Keywords

Navigation