Skip to main content
Log in

Impact of Geomorphological Changes to Harbor Resonance During Meteotsunamis: The Vela Luka Bay Test Case

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In engineering studies, harbor resonance, including quality and amplification factors, is typically computed for swell and waves with periods shorter than 10 min. However, in various locations around the world, such as Vela Luka Bay in Croatia, meteotsunami waves of periods greater than 10 min can excite the bay or harbor natural modes and produce substantial structural damages. In this theoretical study, the impact of some geomorphological changes of Vela Luka Bay—i.e. deepening of the bay, dredging the harbor, adding a pier or a marina—to the amplification of the meteotsunami waves are presented for a set of 6401 idealized pressure wave field forcing used to derive robust statistics. The most substantial increase in maximum elevation is found when the Vela Luka harbor is dredged to a 5 m depth, which is in contradiction with the calculation of the quality factor showing a decrease of the harbor natural resonance. It has been shown that the forcing energy content at different frequency bands should also be taken into account when estimating the quality and amplification factors, as their typical definitions derived from the peak frequency of the sea level spectrum fail to represent the harbor response during meteotsunami events. New definitions of these factors are proposed in this study and are shown to be in good agreement with the results of the statistical analysis of the Vela Luka Bay maximum elevation results. In addition, the presented methodology can easily be applicable to any other location in the world where meteotsunamis occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24.

  • Arbic, B. K., St-Laurent, P., Sutherland, G., & Garrett, C. (2007). On the resonance and influence of the tides in Ungava Bay and Hudson Strait. Geophysical Research Letters, 34, L17606. https://doi.org/10.1029/2007GL030845.

    Article  Google Scholar 

  • Asano, T., Yamashiro, T., & Nishimura, N. (2012). Field observations of meteotsunami locally called “abiki” in Urauchi Bay, Kami-Koshiki Island, Japan. Natural Hazards, 64, 1685–1706.

    Article  Google Scholar 

  • Bechle, A. J., Wu, C. H., Kristovich, D. A. R., Anderson, E. J., Schwab, D. J., & Rabinovich, A. B. (2016). Meteotsunamis in the Laurentian Great Lakes. Scientific Reports, 6, 37832. https://doi.org/10.1038/srep37832.

    Article  Google Scholar 

  • Bellotti, G., & Franco, L. (2011). Measurement of long waves at the harbor of Marina di Carrara, Italy. Ocean Dynamics, 61, 2051–2059.

    Article  Google Scholar 

  • Belušić, D., Grisogono, B., & Bencetić Klaić, Z. (2007). Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. Journal of Geophysical Research, 112, D17111. https://doi.org/10.1029/2006JD008204.

    Article  Google Scholar 

  • Bowers, E. C. (1982). The modelling of waves and their effects in harbors. In Hydraulic modelling in maritime engineering (pp. 121–127). London: Thomas Telford.

    Chapter  Google Scholar 

  • Burkardt, J. (2014). Slow exponential growth for Gauss Patterson sparse grids. http://people.sc.fsu.edu/∼jburkardt/presentations/sgmga_gps.pdf.

  • Chen, H.-C., & Huang, E. T. (2004). Time-domain simulation of floating pier/ship interactions and harbor resonance. In Proceedings of the 14th International Conference on Offshore and Polar Engineering (Vol. 1, pp. 772–774).

  • Churchill, D. D., Houston, S. H., & Bond, N. A. (1995). The Daytona Beach wave of 3–4 July 1992: A shallow water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society, 76, 21–32.

    Article  Google Scholar 

  • Cox, J. C., & Wesson, M. (2007). Manipulating harbor geometries to defeat long wave agitation problems. In 11th Triennial International Conference on Ports, March 25–28, 2007, San Diego. https://doi.org/10.1061/40834(238)42.

  • Cuomo, G., & Guza, R. T. (2017). Infragravity seiches in a small harbor. Journal of Waterway Port Coastal and Ocean Engineering, 143, 04017032. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000392.

    Article  Google Scholar 

  • de Jong, M. P. C., & Battjes, J. A. (2004). Low-frequency sea waves generated by atmospheric convection cells. Journal of Geophysical Research, 109, C01011. https://doi.org/10.1029/2003JC001931.

    Article  Google Scholar 

  • Ferrarin, C., Maicu, F., & Umgiesser, G. (2017). The effect of lagoons on Adriatic Sea tidal dynamics. Ocean Modelling, 119, 57–71.

    Article  Google Scholar 

  • Garcies, M., Gomis, D., & Monserrat, S. (1996). Pressure-forced seiches of large amplitude in inlets of the Balearic Islands. Part II: Observational study. Journal of Geophysical Research, 101(C3), 6453–6467.

    Article  Google Scholar 

  • Garrett, C. (1972). Tidal resonance in Bay of Fundy and Gulf of Maine. Nature, 238, 441–443.

    Article  Google Scholar 

  • Hibiya, T., & Kajiura, K. (1982). Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographic Society of Japan, 38, 172–182.

    Article  Google Scholar 

  • Horvath, K., & Vilibić, I. (2014). Atmospheric mesoscale conditions during the Boothbay meteotsunami: A numerical sensitivity study using a high-resolution mesoscale model. Natural Hazards, 74, 55–74.

    Article  Google Scholar 

  • Keuthen, M., & Kraft, D. (2016). Shape optimization of a breakwater. Inverse Problems in Science and Engineering, 24, 936–956.

    Article  Google Scholar 

  • Kim, H., Kim, M. S., Kim, Y. K., Yoo, S. H., & Lee, H. J. (2017). Numerical weather prediction for mitigating the fatal loss by the meteo-tsunami incidence on the west coast of Korean Peninsula. Journal of Coastal Research, 79, 119–123.

    Article  Google Scholar 

  • Kim, J. S., Park, W. S., Lee, J. W., Seo, J. H., & Shin, S. H. (2015). Experiment of the slit caisson breakwater with embedded resonant channels. OCEANS’15 MTS/IEEE Washington, Washington, DC, pp. 1–5. https://doi.org/10.23919/oceans.2015.7404455.

  • Lončar, G., Carević, D., & Paladin, M. (2010). The (im)possibility of reducing the meteotsunami amplitude by constructing protective breakwaters. Tehnički vjesnik—Technical Gazette, 17, 217–222.

    Google Scholar 

  • López, M., & Iglesias, G. (2014). Long wave effects on a vessel at berth. Applied Ocean Research, 47, 63–72.

    Article  Google Scholar 

  • Luettich, R. A., Birkhahn, R. H., & Westerink, J. J. (1991). Application of ADCIRC-2DDI to Masonboro Inlet, North Carolina: A brief numerical modeling study. Contractors Report to the US Army Engineer Waterways Experiment Station, August, 1991.

  • Maa, J. P. Y., Tsai, C. H., Juang, W. J., & Tseng, H. M. (2011). A preliminary study on Typhoon Tim induced resonance at Hualien Harbor. Taiwan. Ocean Dynamics, 61, 411–423.

    Article  Google Scholar 

  • Miles, J., & Munk, W. (1961). Harbor paradox. Journal of the Waterways and Harbors Division, ASCE, 87, 111–130.

    Google Scholar 

  • Monserrat, S., & Thorpe, A. J. (1992). Gravity-wave observations using an array of microbarographs in the Balearic Islands. Quarterly Journal of the Royal Meteorological Society, 118, 259–282.

    Google Scholar 

  • Monserrat, S., & Thorpe, A. J. (1996). Use of ducting theory in an observed case of gravity waves. Journal of Atmospheric Sciences, 53, 1724–1736.

    Article  Google Scholar 

  • Monserrat, S., Rabinovich, A. B., & Casas, B. (1998). On the reconstruction of the transfer function for atmospherically generated seiches. Geophys. Res. Lett., 25(12), 2197–2200.

    Article  Google Scholar 

  • Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.

    Article  Google Scholar 

  • Nakano, M., & Unoki, S. (1962). On the seiches (secondary undulations of tides) along the coast of Japan. Records Oceanogr. Works Japan, Spec. No. 6, 169-214.

  • Novak, E., Ritter, K., Schmitt, R., & Steinbauer, A. (1999). Simple cubature formulas with high polynomial exactness. Constructive Approximation, 15(4), 499–522.

    Article  Google Scholar 

  • Okihiro, M., Guza, R. T., & Seymour, R. J. (1993). Excitation of seiche observed in a small harbor. Journal of Geophysical Research, 98, 18201–18211.

    Article  Google Scholar 

  • Orlić, M. (2015). The first attempt at cataloguing tsunami-like waves of meteorological origin in Croatian coastal waters. Acta Adriatica, 56, 83–96.

    Google Scholar 

  • Orlić, M., Belušić, D., Janeković, I., & Pasarić, M. (2010). Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. Journal of Geophysical Research, 115, C06011. https://doi.org/10.1029/2009JC005777.

    Article  Google Scholar 

  • Pattiaratchi, C. B., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions of the Royal Society A, 373, 20140377. https://doi.org/10.1098/rsta.2014.0377.

    Article  Google Scholar 

  • Proudman, J. (1929). The effects on the sea of changes in atmospheric pressure. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 2(4), 197–209.

    Article  Google Scholar 

  • Rabinovich, A. B. (1992). Possible vorticity effect in longwave motions (surging) in harbors, Trans. (Doklady) Russian Academy of Sciences. Earth Sciences Sections, 325, 224–228.

    Google Scholar 

  • Rabinovich, A. B. (2009). Seiches and harbor oscillations. In Y. C. Kim (Ed.), Handbook of coastal and ocean engineering (pp. 193–236). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  • Ramis, C., & Jansà, A. (1983). Condiciones meteorológicas simultáneas a la aparición de oscilaciones del nivel del mar de amplitud extraordinaria en el Mediterráneo occidental. Revista Geofísica (in Spanish), 39, 35–42.

    Google Scholar 

  • Schwab, D. J., & Rao, D. B. (1983). Barotropic oscillations of the Mediterranean and Adriatic Seas. Tellus, 35(A), 417–427.

    Article  Google Scholar 

  • Šepić, J., & Rabinovich, A. B. (2014). Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012. Natural Hazards, 74, 75–107.

    Article  Google Scholar 

  • Šepić, J., Vilibić, I., & Monserrat, S. (2016). Quantifying the probability of meteotsunami occurrence from synoptic atmospheric patterns. Geophysical Research Letters, 43, 10377–10384.

    Article  Google Scholar 

  • Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015). Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 5, 11682. https://doi.org/10.1038/srep11682.

    Article  Google Scholar 

  • Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy spectra. Monthly Weather Review, 132, 3019–3032.

    Article  Google Scholar 

  • Smolyak, S. (1963). Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR, 4, 240–243.

    Google Scholar 

  • Vilibić, I., Monserrat, S., & Rabinovich, A. B. (2014). Meteorological tsunamis on the US East Coast and in other regions of the World Ocean. Natural Hazards, 74, 1–9.

    Article  Google Scholar 

  • Vilibić, I., & Šepić, J. (2009). Destructive meteotsunamis along the eastern Adriatic coast: Overview. Physics and Chemistry of the Earth, 34, 904–917.

    Article  Google Scholar 

  • Vilibić, I., & Šepić, J. (2017). Global mapping of nonseismic sea level oscillations at tsunami timescales. Scientific Reports, 7, 40818. https://doi.org/10.1038/srep40818.

    Article  Google Scholar 

  • Vilibić, I., Šepić, J., Rabinovich, A. B., & Monserrat, S. (2016). Modern approaches in meteotsunami research and early warning. Frontiers in Marine Science, 3, 57. https://doi.org/10.3389/fmars.2016.00057.

    Article  Google Scholar 

  • Vučetić, T., Vilibić, I., Tinti, S., & Maramai, A. (2009). The Great Adriatic flood of 21 June 1978 revisited: An overview of the reports. Physics and Chemistry of the Earth, 34, 894–903.

    Article  Google Scholar 

  • Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., et al. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2, 331–345. https://doi.org/10.1002/2015EA000107.

    Article  Google Scholar 

  • Wilson, B. (1972). Seiches. Advances in Hydrosciences, 8, 1–94.

    Google Scholar 

Download references

Acknowledgements

The research has been supported by Croatian Science Foundation (MESSI Project, UKF Grant 25/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cléa Denamiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denamiel, C., Šepić, J. & Vilibić, I. Impact of Geomorphological Changes to Harbor Resonance During Meteotsunamis: The Vela Luka Bay Test Case. Pure Appl. Geophys. 175, 3839–3859 (2018). https://doi.org/10.1007/s00024-018-1862-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1862-5

Keywords

Navigation