Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 4, pp 1231–1237 | Cite as

Introduction to “Global Tsunami Science: Past and Future, Volume III”

  • Alexander B. Rabinovich
  • Hermann M. Fritz
  • Yuichiro Tanioka
  • Eric L. Geist
Article
  • 237 Downloads

Abstract

Twenty papers on the study of tsunamis are included in Volume III of the PAGEOPH topical issue “Global Tsunami Science: Past and Future”. Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 and Volume II as PAGEOPH, vol. 174, No. 8, 2017. Two papers in Volume III focus on specific details of the 2009 Samoa and the 1923 northern Kamchatka tsunamis; they are followed by three papers related to tsunami hazard assessment for three different regions of the world oceans: South Africa, Pacific coast of Mexico and the northwestern part of the Indian Ocean. The next six papers are on various aspects of tsunami hydrodynamics and numerical modelling, including tsunami edge waves, resonant behaviour of compressible water layer during tsunamigenic earthquakes, dispersive properties of seismic and volcanically generated tsunami waves, tsunami runup on a vertical wall and influence of earthquake rupture velocity on maximum tsunami runup. Four papers discuss problems of tsunami warning and real-time forecasting for Central America, the Mediterranean coast of France, the coast of Peru, and some general problems regarding the optimum use of the DART buoy network for effective real-time tsunami warning in the Pacific Ocean. Two papers describe historical and paleotsunami studies in the Russian Far East. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: asteroid airburst and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

Keywords

Tsunami observations and detection tsunami hydrodynamics and modelling tsunami warning and hazard mitigation asteroid tsunami meteotsunami tsunami probability 

Notes

Acknowledgements

We would like to thank Dr. Renata Dmowska, the Editor-in-Chief for Topical Issues of PAGEOPH, for arranging and encouraging us to organize these topical volumes. We also thank Ms. Priyanka Ganesh, Ms. Kirthana Hariharan and Mr. Sathish Srinivasan at the Journals Editorial Office of Springer for their timely editorial assistance and Dr. Kenneth Ryan for review of this Introduction. We thank the authors who contributed papers to these topical volumes. Finally, we would like to especially thank all of the reviewers who shared their time, effort, and expertise to maintain the scientific rigour of these volumes.

References

  1. Aida, I. (1969). Numerical experiments for the tsunami propagation–The 1964 Niigata tsunami and the 1968 Tokachi–Oki tsunami. Bulletin of the Earthquake Research Institute, 47, 673–700.Google Scholar
  2. Berger, M., & Goodman, J. (2018). Airburst-generated tsunamis. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1827-8.Google Scholar
  3. Braitenberg, C., & Rabinovich, A. B. (2017). The Chile-2015 (Illapel) Earthquake and Tsunami (p. 335). Basel: Birkhäuser/Springer.  https://doi.org/10.1007/978-3-319-57822-4.CrossRefGoogle Scholar
  4. Cecioni, C., & Bellotti, G. (2018). On the resonant behavior of a weakly compressible water layer during tsunamigenic earthquakes. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1766-4.Google Scholar
  5. Chacón-Barrantes, S., López-Venegas, A., Sánchez-Ecobar, R., & Lique-Vergara, N. (2018). A collaborative effort between Caribbean states for tsunami numerical modeling: Case study Caribe Wave 15. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1687-7.Google Scholar
  6. Cummins, P. R., Kong, L. S. L., & Satake, K. (2008). Tsunami science four years after the 2004 Indian Ocean Tsunami. Part I: Modelling and hazard assessment. Pure and Applied Geophysics, 165(11–12), Topical Issue.Google Scholar
  7. Cummins, P. R., Kong, L. S. L., & Satake, K. (2009). Tsunami science four years after the 2004 Indian Ocean Tsunami. Part II: Observation and data analysis. Pure and Applied Geophysics, 166(1–2), Topical Issue.Google Scholar
  8. Didenkulova, I., & Pelinovsky, E. (2018). Tsunami wave run-up on a vertical wall in tidal environmental. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1744-2.Google Scholar
  9. Dilmen, D. I., Roe, G. H., Wei, Y., & Titov, V. V. (2018). The role of near-shore bathymetry during tsunami inundation in a reef island setting: A case study of Tutuila Island. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1769-1.Google Scholar
  10. Fuentes, M., Riquelme, S., Ruiz, J., & Campos, J. (2018). Implications on 1 + 1 D Tsunami runup modeling due to time features of the earthquake source. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1804-2.Google Scholar
  11. Gailler, A., Hébert, H., Schindelé, F., & Reymond, D. (2018). Coastal amplification laws for the French Tsunami Warning Center: Numerical modeling and fast estimate of tsunami wave heights along the French Riviera. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1713-9.Google Scholar
  12. Geist, E. L. (2018). Effect of dynamical phase on the resonant interaction among tsunami edge wave modes. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1796-y.Google Scholar
  13. Geist, E. L., Fritz, H. M., Rabinovich, A. B., & Tanioka, Y. (2016). Introduction to “Global Tsunami Science: Past and Future Volume I”. Pure and Applied Geophysics, 173(12), 3663–3669.  https://doi.org/10.1007/s00024-016-1427-4.CrossRefGoogle Scholar
  14. Jiménez, C., Carbonel, C., & Rojas, J. (2018). Numerical procedure to forecast the tsunami parameters from a database of pre-simulated seismic unit sources. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1660-5.Google Scholar
  15. Kijko, A., Smit, A., Papadopoulos, G. A., & Novikova, T. (2018). Tsunami hazard assessment of coastal South Africa based on mega-earthquakes of remote subduction zones. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1727-3.Google Scholar
  16. Ortiz-Huerta, L. G., Ortiz, M., & García-Gasteélum, A. (2018). Far-field tsunami hazard assessment along the Pacific coast of Mexico by historical records and numerical simulation. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1816-y.Google Scholar
  17. Percival, D. B., Denbo, D. W., Gica, E., Huang, P. Y., Mofjeld, H. O., Spillane, M. C., & Titov, V.V. (2018). Evaluating the effectiveness of DART buoy networks based on forecast accuracy. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1824-y.Google Scholar
  18. Pinegina, T. K., Bazanova, L. I., Zelenin, E. A., Bourgeois, J., Kozhurin, A. I., Medvedev, I. P., & Vydrin, D.S. (2018). Holocene tsunamis in Avachinsky Bay, Kamchatka, Russia. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1830-0.Google Scholar
  19. Rabinovich, A. B., Borrero, J. C., & Fritz, H. M. (2014). Tsunamis in the Pacific Ocean: 2010–2011. Pure and Applied Geophysics, 171(12), 3175–3538.CrossRefGoogle Scholar
  20. Rabinovich, A. B., Geist, E. L., Fritz, H. M., & Borrero, J. C. (2015a). Tsunami science: Ten years after the 2004 Indian Ocean Tsunami Volume I. Pure and Applied Geophysics, 172(3–4), Topical Issue.Google Scholar
  21. Rabinovich, A. B., Geist, E. L., Fritz, H. M., & Borrero, J. C. (2015b). Tsunami Science: Ten Years after the 2004 Indian Ocean Tsunami Volume II. Pure and Applied Geophysics, 172(12), 3265–3670.CrossRefGoogle Scholar
  22. Rabinovich, A. B., Fritz, H. M., Tanioka, Y., & Geist, E. L. (2017). Introduction to “Global Tsunami Science: Past and Future Volume II”. Pure and Applied Geophysics, 174(8), 2883–2889.  https://doi.org/10.1007/s00024-017-1638-3.CrossRefGoogle Scholar
  23. Rashidi, A., Shomali, Z. H., & Farajkhah, N. K. (2018). Tsunami simulation using scaled slip models in the western Makran. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1842-9.Google Scholar
  24. Razjigaeva, N. G., Ganzey, L. A., Grebennikova, T. A., Arslanov, K. A., Ivanova, E. D., Ganzey, K. S., & Kharlamov, A.. A. (2018). Historical tsunami records on Russian Island, the Sea of Japan. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1840-y.Google Scholar
  25. Salaree, A., & Okal, E. A. (2018). The “tsunami earthquake” of 13 April 1923b in Northern Kamchatka: Seismological and hydrodynamic investigations. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1769-1.Google Scholar
  26. Sandanbata, O., Watada, S., Satake, K., Fukao, Y., Sugioka, H., Ito, A., & Shiobahara H. (2018). Ray tracing for dispersive tsunamis and source amplitude estimation on Green’s Law: Application to the 2015 Volcanic tsunami earthquake near Torishima, South of Japan. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1746-0.Google Scholar
  27. Satake, K., Okal, E. A., & Borrero, J. C. (2007). Tsunami and its hazards in the Indian and Pacific oceans. Pure and Applied Geophysics, 164(2–3), 249–631.CrossRefGoogle Scholar
  28. Satake, K., Rabinovich, A. B., Kânoğlu, U., & Tinti, S. (2011a). Tsunamis in the World Ocean: Past, Present, and Future. Volume I. Pure and Applied Geophysics, 168(6–7), 963–1249.CrossRefGoogle Scholar
  29. Satake, K., Rabinovich, A. B., Kânoğlu, U., & Tinti, S. (2011b). Tsunamis in the World Ocean: Past, Present, and Future Volume II. Pure and Applied Geophysics, 168(11), 1913–2146.CrossRefGoogle Scholar
  30. Satake, K., Rabinovich, A. B., Dominey-Howes, D., & Borrero, J. C. (2013a). Historical and recent catastrophic tsunamis in the world: Past, present, and future. Volume I: The 2011 Tohoku Tsunami. Pure and Applied Geophysics, 170(6–8), Topical Issue.Google Scholar
  31. Satake, K., Rabinovich, A. B., Dominey-Howes, D., & Borrero, J. C. (2013b). Historical and recent catastrophic tsunamis in the world: Past, present, and future. Volume II: Tsunamis from 1755 to 2010. Pure and Applied Geophysics, 170(9–10), Topical Issue.Google Scholar
  32. Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015). Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 5, 11682.  https://doi.org/10.1038/srep11682.CrossRefGoogle Scholar
  33. Šepić, J., Međugorac, I., Janeković, I., Dunić, N., & Vilibić, I. (2016). Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014. Pure and Applied Geophysics, 173, 4117–4138.CrossRefGoogle Scholar
  34. Šepić, J., Rabinovich, A. B., & Sytov, V. N. (2018a). Odessa tsunami of 27 June 2014: Observations and numerical modelling. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1729-1.Google Scholar
  35. Šepić, J., Vilibić, I., Rabinovich, A., & Tinti, S. (2018b). Meteotsunami (“marrobbio”) of 25–26 June 2014 on the southwestern coast of Sicily. Italy: Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1827-8.Google Scholar
  36. Tanioka, Y., Ramirez, A. G. C., & Yamanaka, Y. (2018). Simulation of a dispersive tsunami due to the 2016 El Salvador-Nicaragua outer-rise earthquake. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1773-5.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander B. Rabinovich
    • 1
    • 2
  • Hermann M. Fritz
    • 3
  • Yuichiro Tanioka
    • 4
  • Eric L. Geist
    • 5
  1. 1.Department of Fisheries and OceansInstitute of Ocean SciencesSidneyCanada
  2. 2.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Institute of Seismology and VolcanologyHokkaido UniversitySapporoJapan
  5. 5.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations