Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

Article
  • 54 Downloads

Abstract

Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

Keywords

Convective gravity waves convectively induced turbulence Kelvin–Helmholtz instability aviation hazards 

Notes

Acknowledgements

We thank Wiebke Deierling, Teddie Keller (each of NCAR), Gretchen Mullendore (University of North Dakota), and an anonymous reviewer for their comments of an earlier version of the manuscript, which helped improve the presentation. We also thank Julia Pearson (NCAR) for constructing Fig. 1 and Lara Ziady (NCAR) for Fig. 2. We acknowledge Earth Networks for providing ENTLN (lightning) data. This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

References

  1. Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., & Ratiu, T. (1984). Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Physical Review Letters, 52, 2352–2355.CrossRefGoogle Scholar
  2. Ahmad, N. N., & Proctor, F. (2011). Large eddy simulations of severe convection induced turbulence. AIAA-2011-3201. 3rd AIAA Atmospheric Space Environments Conference, Honolulu, HI.Google Scholar
  3. Alexander, M. J., & Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. Journal of the Atmospheric Sciences, 64, 1652–1665.CrossRefGoogle Scholar
  4. Alexander, M. J., Holton, J. R., & Durran, D. R. (1995). The gravity wave response above deep convection in a squall line simulation. Journal of the Atmospheric Sciences, 52, 2212–2226.CrossRefGoogle Scholar
  5. Alexander, M. J., & Pfister, L. (1995). Gravity wave momentum flux in the lower stratosphere over convection. Journal of Geophysical Research, 22(15), 2029–2032.CrossRefGoogle Scholar
  6. Ansong, J. K., & Sutherland, B. R. (2010). Internal gravity waves generated by convective plumes. Journal of Fluid Mechanics, 648, 405–434.CrossRefGoogle Scholar
  7. Asai, T. (1970). Stability of a plane parallel flow with variable vertical shear and unstable stratification. Journal of the Meteorological Society of Japan, 48, 129–138.CrossRefGoogle Scholar
  8. Augustine, J. A., & Zipser, E. J. (1987). The use of wind profilers in a mesoscale experiment. Bulletin of the American Meteorological Society, 68, 4–17.CrossRefGoogle Scholar
  9. Baik, J.-J., & Chun, H.-Y. (1996). Effects of nonlinearity on the atmospheric flow response to low-level heating in a uniform flow. Journal of the Atmospheric Sciences, 53, 1856–1869.CrossRefGoogle Scholar
  10. Baik, J. J., Hwang, H.-S., & Chun, H.-Y. (1999). Transient, linear dynamics of a stably stratified shear flow with thermal forcing and a critical level. Journal of the Atmospheric Sciences, 56, 483–499.CrossRefGoogle Scholar
  11. Barber, K. A., Mullendore, G. L., & Alexander, M. J. (2018). Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. Journal of Applied Meteorology and Climatology, 57, 121–136.CrossRefGoogle Scholar
  12. Bedard, Jr. A. J. (1993). Atmospheric turbulence aloft: A review of possible methods for detection, warning, and validation of predictive models. 31st Aerospace Sciences Meeting & Exhibit, AIAA 93-0847, Reno, NV, January 11–14.Google Scholar
  13. Bedka, K. M., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. Journal of Applied Meteorology and Climatolology, 49(2), 181–202.  https://doi.org/10.1175/2009JAMC2286.1.CrossRefGoogle Scholar
  14. Beres, J. H. (2004). Gravity wave generation by a three-dimensional thermal forcing. Journal of the Atmospheric Sciences, 61, 1805–1815.CrossRefGoogle Scholar
  15. Beres, J. H., Alexander, M. J., & Holton, J. R. (2002). Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. Journal of the Atmospheric Sciences, 59, 1805–1824.CrossRefGoogle Scholar
  16. Beres, J. H., Alexander, M. J., & Holton, J. R. (2004). A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. Journal of the Atmospheric Sciences, 61, 324–337.CrossRefGoogle Scholar
  17. Bernardet, L. R., Grasso, L. D., Nachamkin, J. E., Finley, C. A., & Cotton, W. R. (2000). Simulating convective events using a high-resolution mesoscale model. Journal of Geophysical Research: Atmospheres, 105(D11), 14963–14982.  https://doi.org/10.1029/2000jd900100.CrossRefGoogle Scholar
  18. Bradbury, T. A. M. (1973). Glider flight in the lower stratosphere above cumulonimbus clouds. Meteorological Magazine, 102, 110–120.Google Scholar
  19. Bretherton, F. P. (1966). The propagation of groups of internal gravity waves in shear flow. Quarterly Journal of the Royal Meteorological Society, 92, 466–480.CrossRefGoogle Scholar
  20. Bretherton, C. (1988). Group velocity and the linear response of stratified fluids to internal heat or mass sources. Journal of the Atmospheric Sciences, 45, 81–93.CrossRefGoogle Scholar
  21. Bretherton, C. S., & Smolarkiewicz, P. K. (1989). Gravity waves, compensating subsidence and detrainment around cumulus clouds. Journal of the Atmospheric Sciences, 46(6), 740–759.CrossRefGoogle Scholar
  22. Broad, A. S. (1995). Linear theory of momentum fluxes in 3-d flows with turning of the mean wind with height. Quarterly Journal of the Royal Meteorological Society, 121, 1891–1902.CrossRefGoogle Scholar
  23. Bruning, E. C., & MacGorman, D. R. (2013). Theory and observations of controls on lightning flash size spectra. Journal of the Atmospheric Sciences, 70, 4012–4029.CrossRefGoogle Scholar
  24. Bryan, G. H., Wyngaard, J. C., & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep, moist convection. Monthly Weather Review, 131, 2394–2416.CrossRefGoogle Scholar
  25. Burnham, J. (1970). Atmospheric gusts—A review of the results of some recent research at the Royal Aircraft Establishment. Monthly Weather Review, 98(10), 723–734.CrossRefGoogle Scholar
  26. Burns, A., Harrold, T. W., Burnham, J., & Spavins, C. S. (1966). Turbulence in clear air near thunderstorms. National Severe Storms Laboratory Technical Memorandum No. 30, 20 pp.Google Scholar
  27. Cerasoli, C. P. (1978). Experiments on buoyant-parcel motion and the generation of internal gravity waves. Journal of Fluid Mechanics, 86(2), 247–271.CrossRefGoogle Scholar
  28. Chun, H.-Y. (1997). Weakly non-linear response of a stably stratified shear flow to thermal forcing. Tellus, 49A, 528–543.CrossRefGoogle Scholar
  29. Chun, H.-Y., & Baik, J.-J. (1994). Weakly non-linear response of a stably stratified atmosphere to diabatic forcing in a uniform flow. Journal of the Atmospheric Sciences, 41, 3109–3121.CrossRefGoogle Scholar
  30. Chun, H.-Y., & Baik, J.-J. (1998). Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. Journal of the Atmospheric Sciences, 55, 3299–3310.CrossRefGoogle Scholar
  31. Chun, H.-Y., & Baik, J.-J. (2002). An updated parameterization of convectively forced gravity wave drag for use in large-scale models. Journal of the Atmospheric Sciences, 59, 1006–1017.CrossRefGoogle Scholar
  32. Chun, H.-Y., & Kim, Y.-H. (2008). Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux. Journal of Geophysical Research, 113, D23107.  https://doi.org/10.1029/2008JD009792.CrossRefGoogle Scholar
  33. Clark, T. L., Hauf, T., & Kuettner, J. P. (1986). Convectively forced internal gravity waves: results from two-dimensional numerical experiments. Quarterly Journal of the Royal Meteorological Society, 112, 899–925.CrossRefGoogle Scholar
  34. Collander, R., Jamison, B. D., Tollerud, E. I., Caracena, F., Lu, C., & Koch, S. E. (2006). Turbulence in MCS anvils: Observations and analyses from BAMEX. Preprints, 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, Georgia, American Meteorological Society, p. 7.1. Available online at http://ams.confex.com/ams/pdfpapers.104929.pdf.
  35. Cornman, L. B., & Carmichael, B. (1993). Varied research efforts are under way to find means of avoiding air turbulence. ICAO Journal, 48, 10–15.Google Scholar
  36. Cornman, L. B., Morse, C. S., & Cunning, G. (1995). Real-time estimation of atmospheric turbulence severity from in situ aircraft measurements. Journal of Aircraft, 32, 171–177.  https://doi.org/10.2514/3.46697.CrossRefGoogle Scholar
  37. Bedard, A. J. Jr., & Cunningham, W. (1991). Potential aircraft hazards in the vicinity of convective clouds: A review from the perspective of a scale-model study. Preprints, 4th Conference on Aviation Weather Systems (pp. 66–70), Paris, FR, American Meteorological Society.Google Scholar
  38. Deardorff, J. W. (1969). Numerical study of heat transport by internal gravity waves above a growing unstable layer. Physics of Fluids, 12(12), II-184.  https://doi.org/10.1063/1.1692435.CrossRefGoogle Scholar
  39. Deardorff, J. W., Willis, G. E., & Lilly, D. K. (1969). Laboratory investigation of non-steady penetrative convection. Journal of Fluid Mechanics, 35(1), 7–31.CrossRefGoogle Scholar
  40. Deierling, W., & Williams, J. (2016). Relations between lightning and convective turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 179–192). Switzerland: Springer.CrossRefGoogle Scholar
  41. Del Genio, A. D., Yao, M.-S., & Jonas, J. (2007). Will moist convection be stronger in a warmer climate? Geophysical Research Letters, 34, L16703.  https://doi.org/10.1029/2007GL030525.Google Scholar
  42. Diffenbaugh, N. S., Scherer, M., & Trapp, R. J. (2013). Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proceedings of the National academy of Sciences of the United States of America, 110(41), 16361–16366.  https://doi.org/10.1073/pnas.1307758110.CrossRefGoogle Scholar
  43. Dixon, R. S., Browning, K. A., & Shutts, G. J. (2000). The mystery of striated cloud heads in satellite imagery. Atmospheric Science Letters, 1, 1–13.  https://doi.org/10.1006/asle.2000.0001.CrossRefGoogle Scholar
  44. Dörnbrack, A., Gerz, T., & Schumann, U. (1995). Turbulence breaking of overturning gravity waves below a critical level. Applied Scientific Research, 54, 163–176.CrossRefGoogle Scholar
  45. Droegemeier, K.K., Richardson, Y., Bassett, G. M., & Marroquin, A. (1997). Three-dimensional numerical simulations of turbulence generated in the near-environment of deep convective storms. Preprints, 7th Conference on Aviation, Range, and Aerospace Meteorology, 2–7 February, Long Beach, CA, American Meteorological Society, 169–174.Google Scholar
  46. Duran, P., & Molinari, J. (2016). Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to tropical cyclone intensity and the diurnal cycle. Journal of the Atmospheric Sciences, 73, 545–554.CrossRefGoogle Scholar
  47. Durran, D. R., & Klemp, J. B. (1982). On the effects of moisture on the Brunt–Väisälä frequency. Journal of the Atmospheric Sciences, 39, 2152–2158.CrossRefGoogle Scholar
  48. Einaudi, F., Lalas, D. P., & Perona, G. E. (1978). The role of gravity waves in tropospheric processes. Pure and Applied Geophysics, 117(4), 627–663.  https://doi.org/10.1007/BF00879972.CrossRefGoogle Scholar
  49. Eliassen, A., & Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geofysiske Publikasjoner, 22(3), 1–23.Google Scholar
  50. Ellrod, G. P. (1985). Detection of high level turbulence using satellite imagery and upper air data. NOAA Technical Memorandum. NESDIS 10, 30 pp.Google Scholar
  51. Ellrod, G. P., Knox, J. A., Lester, P. F., & Ehernberger, L. J. (2015). Clear air turbulence. In G. R. North., J. Curry., J. Pyle., & F. Zhang (Eds.), Encyclopedia of Atmospheric Sciences (2nd edn, Vol. 1, pp. 177–186). Amsterdam: Academic Press, Elsevier Science Ltd.Google Scholar
  52. Eom, J. K. (1975). Analysis of the internal gravity wave occurence 3 of 19 April 1970 in the Midwest. Monthly Weather Review, 103, 217–226.CrossRefGoogle Scholar
  53. Federal Aviation Administration (FAA) (2014). Aeronautical Information Manual (AIM). Available online at http://www.faa.gov/air_traffic/publications/media/AIM_Basic_4-03-14.pdf.
  54. Fovell, R., Durran, D., & Holton, J. R. (1992). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 49, 1427–1442.CrossRefGoogle Scholar
  55. Fovell, R. G., Sharman, R. D., & Trier, S. B. (2007). A case study of convectively-induced clear-air turbulence. Preprints, 12th Conference on Mesoscale Processes, American Meteorological Society. Waterville Valley, New Hampshire, Paper 13.4.Google Scholar
  56. Fric, T. F., & Roshko, A. (1994). Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics, 279, 1–47.CrossRefGoogle Scholar
  57. Fritsch, J. M., & Maddox, R. A. (1981). Convectively driven mesoscale weather systems aloft. Part I: observations. Journal of Applied Meteorology, 20, 9–19.CrossRefGoogle Scholar
  58. Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003.  https://doi.org/10.1029/2001RG000106.CrossRefGoogle Scholar
  59. Gavrilov, N. M., & Kshevetskii, S. P. (2015). Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere. Advances in Space Research, 56, 1833–1843.CrossRefGoogle Scholar
  60. Geller, M. A., & Gong, J. (2010). Gravity wave kinetic, potential and vertical fluctuation energies as indicators of different frequency gravity waves. Journal of Geophysical Research, 115, D11111.  https://doi.org/10.1029/2009JD012266.CrossRefGoogle Scholar
  61. Gensini, V. A., Ramseyer, C., & Mote, T. L. (2014). Future convective environments using NARCCAP. International Journal of Climatology, 34, 1699–1705.CrossRefGoogle Scholar
  62. Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). San Diego: Academic Press.Google Scholar
  63. Gill, P. G. (2016). Aviation turbulence forecast verification. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 261–283). Berlin: Springer.CrossRefGoogle Scholar
  64. Gong, J., & Geller, M. A. (2010). Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources. Journal of Geophysical Research, 115, D11110.  https://doi.org/10.1029/2009JD012265.CrossRefGoogle Scholar
  65. Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere. New York: Elsevier.Google Scholar
  66. Grabowski, W. W., & Clark, T. L. (1991). Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions. Journal of the Atmospheric Sciences, 48, 527–546.CrossRefGoogle Scholar
  67. Grachev, A. I., Lobachevskiy, L. A., Matveyev, L. K., Mordukhovich, M. I., & Sergeyenko, O. S. (1984). Thick convective cloud cover as a source of internal waves in the troposphere and ionosphere. Izvestiya, Atmospheric and Oceanic Physics, 20(2), 127–129.Google Scholar
  68. Guarino, M.-V., Teixeira, M. A. C., Keller, T. L., & Sharman, R. D. (2017). Mountain wave turbulence in the presence of directional wind shear over the Rocky Mountains. Journal of the Atmospheric Sciences.  https://doi.org/10.1175/JAS-D-17-0128.1.Google Scholar
  69. Gultepe, I., & Starr, D. O'C. (1995).  Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. Journal of the Atmospheric Sciences, 52(23), 4159–4182.CrossRefGoogle Scholar
  70. Gultepe, I., et al. (2018). A review of high impact weather on aviation meteorology applications. Pure and Applied Geophysics, this issue.Google Scholar
  71. Haman, K. (1962). On some possible causes of clear air turbulence. Acta Geophysica Polonica, 10, 335–357.Google Scholar
  72. Hamilton, D. W., & Proctor, F. H. (2003). An aircraft encounter with turbulence in the vicinity of a thunderstorm. 21st Applied Aerodynamics Conference, 23–26 June 2003, Orlando, Florida, AIAA 2003-4075.Google Scholar
  73. Hansen, A. R., Nastrom, G. D., Otkin, J. A., & Eaton, F. D. (2002). MST radar observations of gravity waves and turbulence near thunderstorms. Journal of Applied Meteorology, 41, 298–305.CrossRefGoogle Scholar
  74. Harris, F. I. (1977). The effects of evaporation at the base of ice precipitation layers: Theory and radar observations. Journal of the Atmospheric Sciences, 34, 651–672.CrossRefGoogle Scholar
  75. Hertenstein, R. F. A., & Schubert, W. H. (1991). Potential vorticity anomalies associated with squall lines. Monthly Weather Review, 119, 1663–1672.CrossRefGoogle Scholar
  76. Heymsfield, A. (1975). Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. Journal of the Atmospheric Sciences, 32, 809–819.CrossRefGoogle Scholar
  77. Hodges, R. R., Jr. (1967). Generation of turbulence in the upper atmosphere by internal gravity waves. Journal of Geophysical Research, 72, 3455–3458.CrossRefGoogle Scholar
  78. Hoffmann, L., & Alexander, M. J. (2010). Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115, D20111.  https://doi.org/10.1029/2010JD014401.CrossRefGoogle Scholar
  79. Holton, J. R., & Alexander, M. J. (1999). Gravity waves in the mesosphere generated by tropospheric convection. Tellus A-B, 51, 45–58.CrossRefGoogle Scholar
  80. Homeyer, C. R., McAuliffe, J. D., & Bedka, K. M. (2017). On the development of above-anvil cirrus plumes in extratropical convection. Journal of the Atmospheric Sciences, 74, 1617–1633.CrossRefGoogle Scholar
  81. Homeyer, C. R., Pan, L. L., & Barth, M. C. (2014). Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratospheric stability. Journal of Geophysical Research, 119, 2220–2240.  https://doi.org/10.1002/2013JD020931.Google Scholar
  82. Honomichl, S. B., Detwiler, A. G., & Smith, P. L. (2013). Observed hazards to aircraft in deep summertime convective clouds from 4–7 km. Journal of Aircraft, 50(3), 926–935.  https://doi.org/10.2514/1.C032057.CrossRefGoogle Scholar
  83. International Civil Aviation Organization (ICAO) (2013). Meteorological service for international air navigation.—Annex 3 to the Convention on International Civil Aviation, Appendix 4 Technical Specifications Related to Aircraft Observations and Reports, Section 2.6 Turbulence, 18th Edition, 208 pp. Available online at http://store1.icao.int/index.php/publications/annexes/3-meteorological-service-for-international-air-navigation.html.
  84. Jones, W. L. (1967). Propagation of internal gravity waves in fluids with shear flow and rotation. Journal of Fluid Mechanics, 30, 481–496.CrossRefGoogle Scholar
  85. Jones, T. B. (1982). Generation and propagation of acoustic gravity waves. Nature, 299, 488–489.CrossRefGoogle Scholar
  86. Kang, M.-J., Chun, H.-Y., & Kim, Y.-H. (2017). Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. Journal of the Atmospheric Sciences, 74(10), 3167–3189.  https://doi.org/10.1175/JAS-D-17-0053.1.CrossRefGoogle Scholar
  87. Kaplan, M. L., Huffman, A. W., Lux, K. M., Cetola, J. D., Charney, J. J., Riordan, A. J., et al. (2005). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of supergradient flow and streamwise ageostrophic frontogenesis. Meteorology and Atmospheric Physics, 88, 153–173.CrossRefGoogle Scholar
  88. Keller, T. L., Ehernberger, L. J., & Wurtele, M. G. (1983). Numerical simulation of the atmosphere during a CAT encounter. Preprints, Ninth Conference on Aerospace and Aeronautical Meteorology, Omaha, Nebraska, American Meteorological Society, 316–319.Google Scholar
  89. Kennedy, P. J., & Shapiro, M. A. (1975). The energy budget in a clear-air turbulence zone as observed by aircraft. Monthly Weather Review, 103, 650–654.CrossRefGoogle Scholar
  90. Kessinger, C., Megenhardt, D., Blackburn, G., Olivo, J., Lin, L., Hoang, V., et al. (2017). Displaying convective weather products on an electronic flight bag. Journal of Air Traffic Control, 59(3), 52–61.Google Scholar
  91. Kim, Y.-H., Bushell, A. C., Jackson, D. R., & Chun, H.-Y. (2013). Impacts of introducing a convective gravity-wave parameterization upon the QBO in the Met Office Unified Model. Geophysical Research Letters.  https://doi.org/10.1002/grl.50353.Google Scholar
  92. Kim, J.-H., & Chun, H.-Y. (2011). Statistics and possible sources of aviation turbulence over South Korea. Journal of Applied Meteorology and Climatology, 50, 311–324.CrossRefGoogle Scholar
  93. Kim, J.-H., & Chun, H.-Y. (2012). A numerical simulation of convectively induced turbulence above deep convection. Journal of Applied Meteorology and Climatology, 51, 1180–1200.CrossRefGoogle Scholar
  94. Kim, J.-H., Chun, H.-Y., Sharman, R. D., & Trier, S. B. (2014). The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Monthly Weather Review, 142, 2794–2813.CrossRefGoogle Scholar
  95. Kim, S.-H., Chun, H. Y., Sharman, R. D., & Trier, S. B. (2017). Developing near-cloud aviation turbulence related to breaking of convective gravity waves. Proceedings of the Autumn Meeting of Korean Meteorological Society (KMS), 228–230.Google Scholar
  96. Kim, Y.-J., Eckermann, S. D., & Chun, H.-Y. (2003). An overview of past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmosphere Ocean, 41, 65–98.CrossRefGoogle Scholar
  97. Klostermeyer, & Rüster, R. (1980). Radar observation and model computation of a jet stream-generated Kelvin-Helmholtz instability. Journal of Geophysical Research, 85(C5), 2841–2846.Google Scholar
  98. Knight, C. A., Miller, L. J., & Hall, W. D. (2004). Deep convection and “first echoes’ within anvil precipitation. Monthly Weather Review, 132, 1877–1890.CrossRefGoogle Scholar
  99. Knox, J. A., Bachmeier, A. S., Carter, W. M., Tarantino, J. E., Paulik, L. C., Wilson, E. N., et al. (2010). Transverse cirrus bands in weather systems: A grand tour of an enduring enigma. Weather, 65, 35–41.CrossRefGoogle Scholar
  100. Knox, J. A., Black, A. W., Rackley, J. A., Wilson, E. N., Grant, J. S., Phelps, S. P., et al. (2016). Automated turbulence forecasting strategies. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 243–260). Berlin: Springer.CrossRefGoogle Scholar
  101. Koch, S. E., Jamison, B. D., Lu, C., Smith, T. L., Tollerud, E. I., Girz, C., et al. (2005). Turbulence and gravity waves in an upper-level front. Journal of the Atmospheric Sciences, 62, 3885–3908.CrossRefGoogle Scholar
  102. Kudo, A. (2013). The generation of turbulence below midlevel cloud bases: The effect of cooling due to sublimation of snow. Journal of Applied Meteorology and Climatology, 52, 819–833.CrossRefGoogle Scholar
  103. Kudo, A., Luce, H., Hashiguchi, H., & Wilson, R. (2015). Convective instability underneath midlevel clouds: Comparisons between numerical simulations and VHF radar observations. Journal of Applied Meteorology and Climatology, 54, 2217–2227.CrossRefGoogle Scholar
  104. Kumar, K. K. (2007). VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophysical Research Letters, 34, L01803.  https://doi.org/10.1029/2006GL027404.CrossRefGoogle Scholar
  105. Lafore, J. P., & Moncrieff, M. W. (1989). A numerical investigation of the organization and interaction of convective and stratiform regions of tropical squall lines. Journal of the Atmospheric Sciences, 46, 521–544.CrossRefGoogle Scholar
  106. Lane, T. P. (2008). The vertical response to penetrative convection and the associated gravity-wave generation. Atmospheric Science Letters, 9, 103–110.CrossRefGoogle Scholar
  107. Lane, T. P. (2016). Processes underlying near-cloud turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 317–334). Berlin: Springer.CrossRefGoogle Scholar
  108. Lane, T. P., Doyle, J. D., Plougonven, R., Shapiro, M. A., & Sharman, R. D. (2004). Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. Journal of the Atmospheric Sciences, 61, 2692–2706.CrossRefGoogle Scholar
  109. Lane, T. P., & Knievel, J. C. (2005). Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. Journal of the Atmospheric Sciences, 62, 3408–3419.CrossRefGoogle Scholar
  110. Lane, T. P., Reeder, M. J., & Clark, T. L. (2001). Numerical modeling of gravity wave generation by deep tropical convection. Journal of the Atmospheric Sciences, 58, 1249–1274.CrossRefGoogle Scholar
  111. Lane, T. P., & Sharman, R. D. (2006). Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophysical Research Letters, 33, L23813.  https://doi.org/10.1029/2006GL027988.CrossRefGoogle Scholar
  112. Lane, T. P., & Sharman, R. D. (2008). Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. Journal of Applied Meteorology, 47, 2777–2796.CrossRefGoogle Scholar
  113. Lane, T. P., & Sharman, R. D. (2014). Intensity of thunderstorm-generated turbulence. Geophysical Research Letters, 41, 2221–2227.CrossRefGoogle Scholar
  114. Lane, T. P., Sharman, R. D., Clark, T. L., & Hsu, H.-M. (2003). An investigation of turbulence generation mechanisms above deep convection. Journal of the Atmospheric Sciences, 60, 1297–1321.CrossRefGoogle Scholar
  115. Lane, T. P., Sharman, R. D., Trier, S. B., Fovell, R. G., & Williams, J. K. (2012). Recent advances in the understanding of near-cloud turbulence. Bulletin of the American Meteorological Society, 93(4), 499–515.CrossRefGoogle Scholar
  116. Lemon, L. R. (1976). Wake vortex structure and aerodynamic origin in severe thunderstorms. Journal of the Atmospheric Sciences, 33, 678–685.CrossRefGoogle Scholar
  117. LeMone, M. A. (1973). The structure and dynamics of horizontal roll vortices in the planetary boundary layer. Journal of the Atmospheric Sciences, 30, 1077–1091.CrossRefGoogle Scholar
  118. Lenz, A., Bedka, K., Feltz, W., & Ackerman, S. (2009). Convectively-induced transverse band signatures in satellite imagery. Weather and Forecasting, 24(5), 1362–1373.CrossRefGoogle Scholar
  119. Lester, P. F. (1993). Turbulence: A new perspective for pilots. Englewood: Jeppesen Sanderson Inc.Google Scholar
  120. Levizanni, V., & Setvak, M. (1996). Multispectral, high resolution satellite observations of plumes on top of convective storms. Journal of the Atmospheric Sciences, 53, 361–369.CrossRefGoogle Scholar
  121. Lighthill, J. (1978). Waves in fluids (p. 504). Cambridge: Cambridge University Press.Google Scholar
  122. Lilly, D. K. (1990). Numerical prediction of thunderstorms—Has its time come? Quarterly Journal of the Royal Meteorological Society, 116, 779–798.Google Scholar
  123. Lin, Y.-L. (1986). Calculation of airflow over an isolated heat source with application to the dynamics of V-shaped clouds. Journal of the Atmospheric Sciences, 43, 2736–2751.CrossRefGoogle Scholar
  124. Lin, Y.-L. (1994a). Airflow over mesoscale heat sources. Part I: Responses in a uniform flow. Proceedings of the National Science Council, Republic of China. Part A, Applied Sciences, 18(1), 1–32.Google Scholar
  125. Lin, Y.-L. (1994b). Airflow over mesoscale heat sources. Part II: Responses in a shear flow. Proceedings of the National Science Council, Republic of China. Part A, Applied Sciences, 18(2), 119–150.Google Scholar
  126. Lin, Y.-L. (2007). Mesoscale dynamics (pp. 630). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  127. Lin, Y.-L., & Goff, R. C. (1988). A study of a mesoscale solitary wave in the atmosphere originating near a region of deep convection. Journal of the Atmospheric Sciences, 45, 2401–2415.Google Scholar
  128. Lin, Y.-L., & Li, S. (1988). Three-dimensional response of a shear flow to elevated heating. Journal of the Atmospheric Sciences, 45, 2987–3002.CrossRefGoogle Scholar
  129. Lin, Y.-L., & Smith, R. B. (1986). The transient dynamics of airflow near a local heat source. Journal of the Atmospheric Sciences, 43, 40–49.CrossRefGoogle Scholar
  130. Lindzen, R. S., & Tung, K. K. (1976). Banded convective activity and ducted gravity waves. Monthly Weather Review, 104, 1602–1617.CrossRefGoogle Scholar
  131. Lu, D., VanZandt, T. E., & Clark, W. L. (1984). VHF Doppler radar observations of buoyancy waves associated with thunderstorms. Journal of the Atmospheric Sciences, 41(2), 272–282.CrossRefGoogle Scholar
  132. Luce, H., Nakamura, T., Yamamoto, M. K., Yamamoto, M., & Fukao, S. (2010). MU radar and lidar observations of clear-air turbulence underneath cirrus. Monthly Weather Review, 138, 438–452.CrossRefGoogle Scholar
  133. MacCready, P. (1964). Standardization of gustiness values from aircraft. Journal of Applied Meteorology, 3, 439–449.  https://doi.org/10.1175/1520-0450(1964)003,0439:SOGVFA.2.0.CO;2.CrossRefGoogle Scholar
  134. Mclaren, T., Pierce, A., Fohl, T., & Murphy, B. (1973). An investigation of internal gravity waves generated by a buoyantly rising fluid in a stratified medium. Journal of Fluid Mechanics, 57(2), 229–240.  https://doi.org/10.1017/S0022112073001126.CrossRefGoogle Scholar
  135. McNulty, R. P. (1995). Severe and convective weather: A Central Region forecasting challenge. Weather and Forecasting, 10, 187–202.CrossRefGoogle Scholar
  136. Meneguz, E., Wells, H., & Turp, D. (2016). An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the Northeast Atlantic. Journal of Applied Meteorology and Climatology, 55, 1077–1089.CrossRefGoogle Scholar
  137. Miles, J. (1986). Richardson’s criterion for the stability of stratified shear flow. Physics of Fluids, 29(10), 3470–3471.CrossRefGoogle Scholar
  138. Molinari, J., Duran, P., & Vallaro, D. (2014). Low Richardson number in the tropical cyclone outflow layer. Journal of the Atmospheric Sciences, 71, 3164–3179.CrossRefGoogle Scholar
  139. Monette, S. A., & Sieglaff, J. M. (2014). Probability of convectively induced turbulence associated with geostationary satellite–inferred cloud-top cooling. Journal of Applied Meteorology and Climatology, 53(2), 429–436.CrossRefGoogle Scholar
  140. Moustaoui, M., Joseph, B., & Teitelbaum, H. (2004). Mixing layer formation near the tropopause due to gravity wave-critical level interactions in a cloud-resolving model. Journal of the Atmospheric Sciences, 61, 3112–3124.CrossRefGoogle Scholar
  141. Muhlbauer, A., Kalesse, H., & Kollias, P. (2014). Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based Doppler cloud radar retrievals. Geophysical Research Letters, 41, 7814–7821.  https://doi.org/10.1002/2014GLO62279.CrossRefGoogle Scholar
  142. Nappo, C. J. (2002). An introduction to atmospheric gravity waves (p. 276). San Diego: Academic Press.Google Scholar
  143. Nicholls, M. E., Pielke, R. A., & Cotton, W. R. (1991). Thermally forced gravity waves in an atmosphere at rest. Journal of the Atmospheric Sciences, 48(16), 1869–1884.CrossRefGoogle Scholar
  144. Pandya, R. E., & Alexander, M. J. (1999). Linear stratospheric gravity waves above convective thermal forcing. Journal of the Atmospheric Sciences, 56, 2434–2446.CrossRefGoogle Scholar
  145. Pandya, R. E., & Durran, D. R. (1996). The influence of convectively generated thermal forcing in the mesoscale circulation around squall lines. Journal of the Atmospheric Sciences, 53, 2924–2951.CrossRefGoogle Scholar
  146. Pandya, R., Durran, D., & Bretherton, C. (1993). Comments on “Thermally forced gravity waves in an atmosphere at rest”. Journal of the Atmospheric Sciences, 50(24), 4097–4101.CrossRefGoogle Scholar
  147. Pantley, K. C., & Lester, P. F. (1990). Observations of severe turbulence near thunderstorm tops. Journal of Applied Meteorology, 29, 1171–1179.CrossRefGoogle Scholar
  148. Parks, E. K., Wingrove, R. C., Bach, R. E., & Mehta, R. S. (1985). Identification of vortex-induced clear air turbulence using airline flight records. Journal of Aircraft, 22(2), 124–129.  https://doi.org/10.2514/3.45095.CrossRefGoogle Scholar
  149. Pavelin, E., Whiteway, J. A., & Vaughan, G. (2001). Observations of gravity wave generation and breaking in the lowermost stratosphere. Journal of Geophysical Research, 106, 5173–5179.CrossRefGoogle Scholar
  150. Pearson, J. M., & Sharman, R. D. (2017). Prediction of energy dissipation rates for aviation turbulence: Part I. Nowcasting convective and non-convective turbulence. Journal of Applied Meteorology and Climatology, 56(2), 339–351.  https://doi.org/10.1175/JAMC-D-16-0312.1.CrossRefGoogle Scholar
  151. Petre, J. M., & Verlinde, J. (2004). Cloud radar observations of Kelvin–Helmholtz instability in a Florida anvil. Monthly Weather Review, 132, 2520–2523.CrossRefGoogle Scholar
  152. Piani, C., Durran, D., Alexander, M. J., & Holton, J. R. (2000). A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. Journal of the Atmospheric Sciences, 57(22), 3689–3702.CrossRefGoogle Scholar
  153. Pierce, A. D., & Coroniti, S. C. (1966). A mechanism for the generation of acoustic gravity waves during thunderstorm formation. Nature, 18, 1209–1210.CrossRefGoogle Scholar
  154. Pinçon, C., Belkacem, K., & Goupil, M. J. (2016). Generation of internal gravity waves by penetrative convection. Astronomy and Astrophysics, A122, 1-21,  https://doi.org/10.1051/0004-6361/201527663.
  155. Plougonven, R., Teitelbaum, H., & Zeitlen, V. (2003). Inertia-gravity waves generation by the tropospheric mid-latitude jet as given by the FASTEX radiosoundings. Journal of Geophysical Research, 108, 4686.  https://doi.org/10.1029/2003JD003535.CrossRefGoogle Scholar
  156. Plougonven, R., & Zhang, F. (2016). Gravity waves generated by jets and fronts and their relevance for clear-air turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 385–406). Berlin: Springer.CrossRefGoogle Scholar
  157. Pond, S. R. (2015). Analysis of aircraft flights near convective weather over Europe. Weather, 70(10), 292–296.CrossRefGoogle Scholar
  158. Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J., et al. (2017). Increased rainfall volume from future convective storms in the US. Nature Climate Change, 7, 880–884.CrossRefGoogle Scholar
  159. Prophet, D. T. (1970). Vertical extent of turbulence in clear air above the tops of thunderstorms. Journal of Applied Meteorology, 9, 320–321.CrossRefGoogle Scholar
  160. Queney, P. (1948). The problem of airflow over mountains. A summary of theoretical studies. Bulletin of the American Meteorological Society, 29, 16–26.Google Scholar
  161. Reiter, E. R., & Lester, P. F. (1968). Richardson’s Number in the free atmosphere. Arch. Met. Geoph. Biokl. A, 17, 1–7.CrossRefGoogle Scholar
  162. Romanova, N. N., & Yakushkin, I. G. (1995). Internal gravity waves in the lower atmosphere and sources of their generation (review). Izvestiya, Atmospheric and Oceanic Physics, 31(2), 151–172.Google Scholar
  163. Romps, D. M., Seeley, J. T., Vollaro, D., & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–853.CrossRefGoogle Scholar
  164. Ruppert, J. H., Jr., & Bosart, L. F. (2014). A case study of the interaction of a mesoscale gravity wave with a mesoscale convective system. Monthly Weather Review, 142, 1403–1429.CrossRefGoogle Scholar
  165. Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P., & Van Meijgaard, E. (2015). Weather forecasting using GPU-based large-eddy simulations. Bulletin of the American Meteorological Society, 96, 715–723.  https://doi.org/10.1175/BAMS-D-14-00114.1.CrossRefGoogle Scholar
  166. Schultz, D. M., Kanak, K. M., Straka, J. M., Trapp, R. J., Gordon, B. A., Zrnic, D. R., et al. (2006). The mysteries of mammatus clouds: Observations and formation mechanisms. Journal of the Atmospheric Sciences, 63, 2409–2435.CrossRefGoogle Scholar
  167. Schwartz, B. (1996). The quantitative use of PIREPs in developing aviation weather guidance products. Weather and Forecasting, 11, 372–384.  https://doi.org/10.1175/1520-434(1996)011,0372:TQUOPI.2.0.CO;2.CrossRefGoogle Scholar
  168. Shapiro, M. A. (1976). The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems. Monthly Weather Review, 104(7), 892–906CrossRefGoogle Scholar
  169. Sharman, R. (2016). Nature of aviation turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 3–30). Berlin: Springer.CrossRefGoogle Scholar
  170. Sharman, R. D., Cornman, L. B., Meymaris, G., Pearson, J., & Farrar, T. (2014). Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. Journal of Applied Meteorology and Climatology, 53(6), 1416–1432.  https://doi.org/10.1175/JAMC-D-13-0329.1.CrossRefGoogle Scholar
  171. Sharman, R., Lane, T., & Schumann, U. (2016). Research needs. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 501–508). Berlin: Springer.CrossRefGoogle Scholar
  172. Sharman, R. D., & Pearson, J. M. (2017). Prediction of energy dissipation rates for aviation turbulence: Part I. Forecasting Non-convective turbulence. Journal of Applied Meteorology and Climatology, 56(2), 317–337.  https://doi.org/10.1175/JAMC-D-16-0205.1.CrossRefGoogle Scholar
  173. Sharman, R. D., Trier, S. B., Lane, T. P., & Doyle, J. D. (2012). Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophysical Research Letters, 39, L12803.  https://doi.org/10.1029/2012GL051996.CrossRefGoogle Scholar
  174. Sharman, R. D., & Wurtele, M. G. (1983). Ship waves and lee waves. Journal of the Atmospheric Sciences, 40, 396–427.CrossRefGoogle Scholar
  175. Sharman, R. D., & Wurtele, M. G. (2004). Three-dimensional structure of forced gravity waves and lee waves. Journal of the Atmospheric Sciences, 61, 664–680.CrossRefGoogle Scholar
  176. Shutts, G. J. (1998). Stationary gravity-wave structure in flows with directional wind shear. Quarterly Journal of the Royal Meteorological Society, 124, 1421–1442.Google Scholar
  177. Smull, B. F., & Houze, R. A., Jr. (1987). Rear inflow in squall lines with trailing stratiform precipitation. Monthly Weather Review, 115, 2869–2889.CrossRefGoogle Scholar
  178. Snively, J. B., & Pasko, V. P. (2003). Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophysical Research Letters, 30(24), 2254.  https://doi.org/10.1029/2003GL018436.CrossRefGoogle Scholar
  179. Song, I.-S., Chun, H.-Y., & Lane, T. P. (2003). Generation mechanisms of convectively forced internal gravity waves and their propagation into the stratosphere. Journal of the Atmospheric Sciences, 60, 1960–1980.CrossRefGoogle Scholar
  180. Stephan, C., & Alexander, M. J. (2015). Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. Journal of Advances in Modeling Earth Systems, 7, 823–835.  https://doi.org/10.1002/2014MS000396.CrossRefGoogle Scholar
  181. Stobie, J. G., Einaudi, F., & Uccellini, L. W. (1983). A case study of gravity waves—convective storms interaction: 9 May 1979. Journal of Atmospheric Science, 40(12), 2804–2830.CrossRefGoogle Scholar
  182. Storer, L. N., Williams, P. D., & Joshi, M. M. (2017). Global response of clear-air turbulence to climate change. Geophysical Research Letters.  https://doi.org/10.1002/2017GL074618.Google Scholar
  183. Stull, R. B. (1976). Internal gravity waves generated by penetrative convection. Journal of the Atmospheric Sciences, 33, 1279–1286.CrossRefGoogle Scholar
  184. Teitelbaum, H., Moustaoui, M., Sadourny, R., & Lott, F. (1999). Critical levels and mixing layers induced by convectively generated gravity waves during CEPEX. Quarterly Journal of the Royal Meteorological Society, 125, 1715–1734.CrossRefGoogle Scholar
  185. Townsend, A. A. (1966). Internal waves produced by a convective layer. Journal of Fluid Mechanics, 24(2), 307–319.CrossRefGoogle Scholar
  186. Townsend, A. A. (1968). Excitation of internal waves in a stably-stratified atmosphere with considerable wind-shear. Journal of Fluid Mechanics, 32(1), 3145–3171.CrossRefGoogle Scholar
  187. Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., Baldwin, M. E., Robinson, E. D., & Pal, J. S. (2007). Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proceedings of the National academy of Sciences of the United States of America, 104(50), 19719–19723.CrossRefGoogle Scholar
  188. Trier, S. B. (2016). Modeling studies of turbulence mechanisms associated with mesoscale convective systems. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 335-356). Berlin: Springer.Google Scholar
  189. Trier, S. B., & Sharman, R. D. (2009). Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Monthly Weather Review, 137, 1972–1990.CrossRefGoogle Scholar
  190. Trier, S. B., & Sharman, R. D. (2016). Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Monthly Weather Review, 144, 3003–3027.CrossRefGoogle Scholar
  191. Trier, S. B., Sharman, R. D., Fovell, R. G., & Frehlich, R. G. (2010). Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. Journal of the Atmospheric Sciences, 67, 2990–2999.CrossRefGoogle Scholar
  192. Trier, S. B., Sharman, R. D., & Lane, T. P. (2012). Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Monthly Weather Review, 140, 2477–2496.CrossRefGoogle Scholar
  193. Turner, J. S. (1973). Buoyancy effects in fluids. Cambridge: Cambridge University Press, 367 pp.CrossRefGoogle Scholar
  194. Uccellini, L. W., & Koch, S. E. (1987). The synoptic setting and possible energy sources for mesoscale wave disturbances. Monthly Weather Review, 115, 721–729.CrossRefGoogle Scholar
  195. Verrelle, A., Richard, D., & Lac, C. (2017). Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Monthly Weather Review, 145, 3947–3967.CrossRefGoogle Scholar
  196. Wakimoto, R. M., & Murphey, H. V. (2009). Analysis of a dryline during IHOP: Implications for convection initiation. Monthly Weather Review, 137, 912–936.CrossRefGoogle Scholar
  197. Wang, P. K. (2003). Moisture plumes above thunderstorm anvils and their contributions to cross tropopause transport of water vapor in midlatitudes. Journal of Geophysical Research, 108(D6), 4194.  https://doi.org/10.1029/2003JD002581.CrossRefGoogle Scholar
  198. Wang, P. K. (2007). The thermodynamic structure atop a penetrating convective thunderstorm. Atmospheric Research, 83, 254–262.CrossRefGoogle Scholar
  199. Wang, P. K., Su, S.-H., Setvak, M., Lin, H., & Rabin, R. M. (2010). Ship wave signature at the cloud top of deep convective storms. Atmospheric Research, 97, 294–302.CrossRefGoogle Scholar
  200. Wei, J., & Zhang, F. (2014). Mesoscale gravity waves in moist baroclinic jet-front systems. Journal of the Atmospheric Sciences, 71, 929–952.CrossRefGoogle Scholar
  201. Weisman, M. L. (1992). The role of convectively generated rear-inflow jets in the evolution of long-lived mesoscale convective systems. Journal of the Atmospheric Sciences, 49, 1826–1847.CrossRefGoogle Scholar
  202. Weisman, M. L., Davis, C., Wang, W., Manning, K. W., & Klemp, J. B. (2008). Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Weather and Forecasting, 23, 407–437.CrossRefGoogle Scholar
  203. Williams, J. K. (2014). Using random forests to diagnose aviation turbulence. Machine Learning, 95, 51–70.  https://doi.org/10.1007/s10994-013-5346-7.CrossRefGoogle Scholar
  204. Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in Atmospheric Sciences, 34(5), 576–586.CrossRefGoogle Scholar
  205. Williams, P. D., & Joshi, M. M. (2013). Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3, 644–648.CrossRefGoogle Scholar
  206. Williams, P. D., & Joshi, M. M. (2016). Clear-air turbulence in a changing climate. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 465–480). Berlin: Springer.Google Scholar
  207. Williams, J. K., & Meymaris, G. (2016). Remote turbulence detection using ground-based Doppler radar. Aviation turbulence forecast verification. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 335–356). Berlin: Springer.Google Scholar
  208. Wimmers, A., Griffin, S., Gerth, J., Bachmeier, S., & Lindstrom, S. (2018). Observations of gravity waves with high-pass filtering in the new generation of geostationary imagers and their relation to turbulence. Weather and Forecasting, 33, 139–144.CrossRefGoogle Scholar
  209. Wolff, J. K., & Sharman, R. D. (2008). Climatology of upper-level turbulence over the continental Unites States. Journal of Applied Meteorology and Climatology, 47(8), 2198–2214.  https://doi.org/10.1175/2008JAMC1799.1.CrossRefGoogle Scholar
  210. Wurtele, M. G., Datta, A., & Sharman, R. D. (1996). The propagation of gravity-inertia waves and lee waves under a critical level. Journal of the Atmospheric Sciences, 53(11), 1505–1523.CrossRefGoogle Scholar
  211. Zhang, F. (2004). Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. Journal of the Atmospheric Sciences, 61, 440–457.CrossRefGoogle Scholar
  212. Zhou, X., Holton, J. R., & Mullendore, G. L. (2002). Forcing of secondary waves by breaking of gravity waves in the mesosphere. Journal of Geophysical Research, 107(D7), 4058.  https://doi.org/10.1029/2001JD001204.CrossRefGoogle Scholar
  213. Zovko-Rajak, D., & Lane, T. P. (2014). The generation of near-cloud turbulence in idealized simulations. Journal of the Atmospheric Sciences, 71, 2430–2451.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations