Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 8, pp 2905–2930 | Cite as

Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

  • Nimisha Vedanti
  • Ajay Malkoti
  • O. P. PandeyEmail author
  • J. P. Shrivastava
Article

Abstract

Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80–3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01–6.50 km/s) and 3.43 km/s (range 2.84–3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40–2.79 g/cm3) as well as P-wave (3.28–4.78 km/s) and S-wave (1.70–2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low Vp and Vs of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Qp: 33–1960 and Qs: 35–506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Qp (6–46) as well as Qs (5–49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be responsible for the generation of microcracks, which may generate squirt flow in saturated samples. Hence, we argue that the Deccan basalts attenuate seismic energy significantly, where its composition plays a major role.

Keywords

Petrophysical properties P- and S-wave attenuation massive and vesicular basalts Ambenali and Poladpur Formations Killari borehole Deccan traps 

Notes

Acknowledgements

We thank Drs. K.J.P. Lakshmi, Kesav Krishna and M. Satyanarayanan for petrophysical and geochemical analysis and Drs. D. V. Subbarao and Dinesh Pandit for petrological examination of the thin sections and many useful discussions. We are also thankful to Prof. Mrinal K. Sen, Ex-Director, CSIR-National Geophysical Research Institute, Hyderabad, for making available the samples for the analysis. This study has been supported by CSIR project SHORE PSC 0205. Dr. O.P. Pandey is thankful to CSIR for emeritus scientist position at CSIR-NGRI. One of the authors (AM) acknowledges UGC for providing Senior Research Fellowship. Further, highly constructive suggestions made by the anonymous reviewer and Prof. Y. Gueguen, Editor, Pure and Applied Geophysics, have been very helpful in improving the manuscript. Permission accorded by the Director CSIR-NGRI to publish this work, is also gratefully acknowledged.

References

  1. Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., & Walsh, J. N. (1986). Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India. Bulletin Volcanology, 48, 61–83.CrossRefGoogle Scholar
  2. Birch, F. (1960). The velocity of compressional waves in rocks to 10 Kilobars, part 1. Journal of Geophysical Research, 65, 1083–1102.CrossRefGoogle Scholar
  3. Birch, F. (1961a). Composition of the earth’s mantle. Geophysical Journal of Royal Astronomical Society, 4, 295–311.CrossRefGoogle Scholar
  4. Birch, F. (1961b). The velocity of compressional waves in rocks to 10 kilobars, part 2. Journal of Geophysical Research, 66, 2199–2224.CrossRefGoogle Scholar
  5. Brown, E. T. (1981). Rock characterization testing and monitoring: ISRM suggested methods. Oxford, New York: International Society of Rock Mechanics.Google Scholar
  6. Carlson, R. L., & Herrick, C. N. (1990). Densities and porosities in the oceanic crust and their variation with depth and age. Journal of Geophysical Research, 95, 9153–9170.CrossRefGoogle Scholar
  7. Cerney, B., & Carlson, R. L. (1999). The effect of cracks on the seismic velocities of Basalt from site 990, SE Greenland margin. Proceeding of the Ocean Drilling Program, Scientific Results, 163, 29–35.Google Scholar
  8. Chatterjee, N., & Bhattacharji, S. (2008). Trace elements variation in Deccan basalts: Role of mantle melting, fractional crystallization and crustal assimilation. Journal of Geological Society of India, 71, 171–188.Google Scholar
  9. Christensen, N. I. (1968). Compressional wave velocities in basic rocks. Pacific Science, XXII, 41–44.Google Scholar
  10. Christensen, N. I., Blair, S. C., Wilkens, R. H., & Salisbury, M. H. (1980). Compressional wave velocities, densities, and porosities of basalts from Holes 417A, 417 D, and 418 A. Deep Sea Drilling Project Legs 51–53. In: T. Donnelly et al. (Eds.), Init. Reports DSDP, 51,52,53 (part 2, pp. 1467–1471).Google Scholar
  11. Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100, 9761–9788.CrossRefGoogle Scholar
  12. Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M. G., & Besse, J. (1988). Deccan flood basalts and the cretaceous/tertiary boundary. Nature, 333, 843–846.CrossRefGoogle Scholar
  13. Cox, K. G., & Hawkesworth, C. J. (1985). Geochemical Stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic process. Journal of Petrology, 26, 355–377.CrossRefGoogle Scholar
  14. Cox, K. G., & Mitchell, C. (1988). Importance of crystal settling in the differentiation of Deccan Trap basaltic magmas. Nature, 333, 447–449.CrossRefGoogle Scholar
  15. Dixit, M. M., Tewari, H. C., & Visweswara Rao, C. (2010). Two-dimensional velocity model of the crust beneath the South Cambay Basin, India from refraction and wide-angle reflection data. Geophysical Journal International, 181, 635–652.Google Scholar
  16. Goldberg, D., & Sun, Y. F. (1997). Attenuation differences in layer 2A in intermediate- and slow-spreading oceanic crust. Earth and Planetary Science Letters, 150, 221–231.CrossRefGoogle Scholar
  17. Goldberg, D., & Yin, C. S. (1994). Attenuation of p-waves in oceanic crust: Multiple scattering from observed heterogeneities. Geophysical Research Letters, 21, 2311–2314.CrossRefGoogle Scholar
  18. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The Geologic Time Scale 2012. Amsterdam: Elsevier.Google Scholar
  19. Gupta, H. K., & Dwivedi, K. K. (1996). Drilling at Latur earthquake region exposes a peninsular gneiss basement. Journal of Geological Society of India, 47, 129–131.Google Scholar
  20. Gupta, H. K., & Gupta, G. D. (2003). Earthquake studies in Peninsular India since 1993. Memoir Geological Society of India, 54, 254.Google Scholar
  21. Gupta, H. K., Mohan, I., Rastogi, B. K., Rao, C. V. K., & Rao, G. V., et al. (1993). Investigation of Latur earthquakes of September 30, 1993. In: Abstract Volume, Workshop on 30 September 1993 Maharashtra Earthquake, December 24, 1993, Hyderabad, pp. 2–3Google Scholar
  22. Gupta, H. K., Srinivasan, R., Rao, R. U. M., Rao, G. V., Reddy, G. K., Roy, S., et al. (2003). Borehole investigations in the surface rupture zone of the 1993 Latur SCR earthquake, Maharashtra, India: Overview of results. Memoir Geological Society of India, 54, 1–22.Google Scholar
  23. Ivankina, T. I., Kern, H. M., & Nikitin, A. N. (2005). Directional dependence of P- and S-wave propagation and polarization in foliated rocks from Kola superdeep well: Evidence from laboratory measurements and calculations based on TOF neutron diffraction. Tectonophysics, 407, 25–42.CrossRefGoogle Scholar
  24. Jay, A. E., & Widdowson, M. (2008). Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. Journal Geological Society of London, 165, 177–188.CrossRefGoogle Scholar
  25. Ji, S., Wang, Q., & Salisbury, M. H. (2009). Composition and tectonic evolution of the Chinese continental crust constrained by Poissons’ ratio. Tectonophysics, 463, 15–30.CrossRefGoogle Scholar
  26. Kern, H., Megjel, K., Strauss, K. W., Ivankina, T. I., Nikitin, A. N., & Kukkonen, I. T. (2009). Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling. Physics of the Earth and Planetary Interiors, 175, 151–166.CrossRefGoogle Scholar
  27. Kern, H., Walther, C. H., Fluh, E. R., & Marker, M. (1993). Seismic properties of rocks exposed in the POLAR profile region—Constraints on the interpretation of the refraction data. Precambrian Research, 64, 169–187.CrossRefGoogle Scholar
  28. Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an Industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.  https://doi.org/10.1007/s10661-006-9224-7.CrossRefGoogle Scholar
  29. Lewis, B. T. R., & Jung, H. (1989). Attenuation of refracted seismic waves in young oceanic crust. Bulletin of the Seismological Society of America, 79, 1070–1088.Google Scholar
  30. Lightfoot, P. C., Hawkesworth, C. J., Devey, C. W., Rogers, N. W., & Van Calsteren, P. W. C. (1990). Source and differentiation of Deccan trap lavas: Implications of geochemical and mineral chemical variations. Journal of Petrology, 31, 1165–1200.CrossRefGoogle Scholar
  31. Mahoney, J. J. (1988). Deccan traps. In J. D. Macdougall (Ed.), Continental flood basalts (pp. 151–194). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  32. Mitchell, C. H., & Widdowson, M. (1991). A geological map of the southern Deccan, India and its structural implications. Journal of Geological Society of London, 148, 495–505.CrossRefGoogle Scholar
  33. Moose, D., & Zoback, M. D. (1983). In situ studies of velocity in fractured crystallined rock. Journal of Geophysical Research, 88(B3), 2345–2358.CrossRefGoogle Scholar
  34. Murphy, W. F. (1982). Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. The Journal of the Acoustical Society of America, 71(6), 1458–1468.  https://doi.org/10.1121/1.387843.CrossRefGoogle Scholar
  35. Murty, A. S. N., Koteswara Rao, P., Dixit, M. M., Kesava Rao, G., Reddy, M. S., Prasad, B. R., et al. (2011). Basement configuration of the Jhagadia-Rajpipla profile in the western part of Deccan syneclise, India from travel-time inversion of seismic refraction and wide-angle reflection data. Journal of Asian Earth Sciences, 40, 40–51.CrossRefGoogle Scholar
  36. Murty, A. S. N., Rajendra Prasad, B., Rao, Koteswara, Raju, S., & Sateesh, T. (2010). Delineation of subtrappean Mesozoic sediments in Deccan syneclise, India, using travel-time inversion of seismic refraction and wide-angle reflection data. Pure and Applied Geophysics, 167, 233–251.CrossRefGoogle Scholar
  37. Pandey, O. P. (2008). Deccan Trap volcanic eruption affected the Archean Dharwar craton of southern India: Seismic evidences. Journal of Geological Society of India, 72, 510–514.Google Scholar
  38. Pandey, O. P. (2009). Shallowing of mafic crust and seismic instability in the high velocity Indian shield. Journal of Geological Society of India, 74, 615–624.CrossRefGoogle Scholar
  39. Pandey, O. P. (2016). Deep Scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geoscience Frontiers, 7, 851–858.  https://doi.org/10.1016/j.gsf.2015.08.010.CrossRefGoogle Scholar
  40. Pandey, O. P., Chandrakala, K., Parthasarathy, G., Reddy, P. R., & Koti Reddy, G. (2009). Upwarped high-velocity mafic crust, subsurface tectonics and causes of intraplate Latur-Killari (M 6.2) and Koyna (M 6.3) earthquakes, India—A comparative study. Journal of Asian Earth Sciences, 34, 781–795.CrossRefGoogle Scholar
  41. Pandey, O. P., Tripathi, P., Parthasarathy, G., Rajagopalan, V., & Sreedhar, B. (2014). Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra, India: Evidence for mantle metasomatism beneath the Deccan Traps. Journal of Geological Society of India, 83, 599–612.CrossRefGoogle Scholar
  42. Pandey, O. P., Tripathi, P., Vedanti, M., & SrinivasaSarma, D. (2016). Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharashtra (India): A case study. Pure and Applied Geophysics, 173, 2455–2471.CrossRefGoogle Scholar
  43. Parthasarathy, G. (2006). Zeolite zonation and amygdaloidal minerals from the Killari borehole of Deccan traps, Maharashtra, India. Journal of Applied Geochemistry, 8, 546–557.Google Scholar
  44. Parthasarathy, G., Choudary, B. M., Sreedhar, B., Kunwar, A. C., & Srinivasan, R. (2003). Ferrous saponite from Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium. American Mineralogist, 88, 1983–1988.CrossRefGoogle Scholar
  45. Prasanna Lakshmi, K. J., Senthil Kumar, P., Vijayakumar, K., Ravinder, S., Seshunarayana, T., & Sen, M. K. (2014). Petrophysical properties of the Deccan basalts exposed in the Western Ghats escarpment around Mahabaleshwar and Koyna, India. Journal of Asian Earth Sciences, 84, 176–187.CrossRefGoogle Scholar
  46. Ramana, Y. V., & Rao, M. V. M. S. (1974). Q by pulse broadening in rocks under pressure. Physics of the Earth and Planetary Interiors, 8(4), 337–341.  https://doi.org/10.1016/0031-9201(74)90042-9.CrossRefGoogle Scholar
  47. Rao, M. V. M. S., & Prasanna Lakshmi, K. J. (2003). Shear-wave propagation in rocks and other lossy media: An experimental study. Current Science, 85, 1221–1225.Google Scholar
  48. Rao, M. V. M. S., Prasanna Lakshmi, K. J., Sarma, L. P., & Chary, K. B. (2006). Elastic properties of granulite facies rocks of Mahabalipuram, Tamil Nadu,India. Journal of Earth System Science, 115(6), 673–683.  https://doi.org/10.1007/s12040-006-0005-z.CrossRefGoogle Scholar
  49. Reddy, G. K., Rao, G. V., & Rao, R. U. M. (1998). Low density of Deccan traps: Evidence from boreholes at Killari, Latur earthquake site and implications for geophysical modeling. In: Abstract volume, Chapman Conference on Stable Continental Region (SCR) earthquakes, Hyderabad, 25–29 January, p. 31.Google Scholar
  50. Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L., & Pande, K. (2015). State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350(Issue 6256), 76–78.CrossRefGoogle Scholar
  51. Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267–309.CrossRefGoogle Scholar
  52. Sano, T., Fujii, T., Deshmukh, S. S., Fukuoka, T., & Aramaki, S. (2001). Differentiation process of Deccan trap basalts: Contribution from geochemistry and experimental petrology. Journal of Petrology, 42, 2175–2195.CrossRefGoogle Scholar
  53. Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., et al. (2015). U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218), 182–184.CrossRefGoogle Scholar
  54. Sen, G. (2001). Generation of Deccan trap magmas. Proceedings of Indian Academy of Sciences (Earth Planet Sci.), 110, 409–431.Google Scholar
  55. Sen, G., Borges, M., & Marsh, B. D. (2006). A case for short duration of Deccan Trap eruption. EOS, 87(20), 197–204.CrossRefGoogle Scholar
  56. Sen, G., & Chandrasekharam, D. (2011). Deccan trap flood basalt province: An evaluation of the thermochemical plume model. In: J. Ray, et al. (Eds.), Topics in igneous petrology.  https://doi.org/10.1007/978-90-481-9600-5_2.
  57. Shrivastava, J. P., Duncan, R. A., & Kashyap, M. (2015). Post-K/PB younger 40Ar–39Ar ages of the Mandla lavas: Implications for the duration of the Deccan volcanism. Lithos, 224, 214–224.CrossRefGoogle Scholar
  58. Shrivastava, J. P., Kumar, R., & Rani, N. (2017). Feeder and post Deccan Trap dyke activities in the northern slope of the Satpura Mountain: Evidence from new 40Ar-39Ar ages. Geoscience Frontier, 8, 483–492.CrossRefGoogle Scholar
  59. Shrivastava, J. P., Mahoney, J. J., & Kashyap, M. R. (2014). Trace elemental and Nd-Sr-Pb isotopic compositional variation in 37 lava flows of the Mandla lobe and their chemical relation to the western Deccan stratigraphic succession, India. Mineralogy and Petrology, 108, 801–817.CrossRefGoogle Scholar
  60. Sun, S., Ji, S., Wang, Q., Xu, Z., Salisbury, M., & Long, C. (2012). Seismic velocities and anisotropy of core samples from the Chinese continental scientific drilling borehole in the Sulu UHP terrane, Eastern China. Journal of Geophysical Research, 117, B01206.  https://doi.org/10.1029/2011JB008672.CrossRefGoogle Scholar
  61. Tisato, N., & Quintal, B. (2014). Laboratory measurements of seismic attenuation in sandstone: Strain versus fluid saturation effects. Geophysics, 79(5), WB9–WB14.  https://doi.org/10.1190/geo2013-0419.1.CrossRefGoogle Scholar
  62. Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic P-and S-wave attenuation in Oceanic Basalt. Geophysical Journal International, 145, 172–186.CrossRefGoogle Scholar
  63. Tripathi, P. (2015). Nature and composition of crystalline basement below Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharashtra (India). Ph.D. thesis, Osmania University, Hyderabad, India, p. 164.Google Scholar
  64. Tripathi, P., Pandey, O. P., Rao, M. V. M. S., & Koti Reddy, G. (2012a). Elastic properties of amphibolite and granulite facies mid-crustal basement rocks of the Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharashtra (India) and mantle metasomatism. Tectonophysics, 554–557, 159–168.CrossRefGoogle Scholar
  65. Tripathi, P., Parthasarathy, G., Masood Ahmed, S. M., & Pandey, O. P. (2012b). Mantle-derived fluids in the basement of the Deccan trap: Evidence from stable carbon and oxygen isotopes of carbonates from the Killari borehole basement, Maharashtra, India. International Journal of Earth Sciences, 101, 1385–1395.CrossRefGoogle Scholar
  66. Ullemeyer, K., Nikolayev, D. I., Christensen, N. I., & Behrmann, J. H. (2011). Evaluation of Intrinsic velocity–pressure trends from low-pressure P-wave velocity measurements in rocks containing microcracks. Geophysical Journal International, 185, 1312–1320.CrossRefGoogle Scholar
  67. Vedanti, N., Lakshmi, K. J. P., Dutta, S., Malkoti, A., & Pandey, O. P. (2015). Investigation of petrophysical properties and ultrasonic P-and S-wave attenuation in Deccan Flood Basalts, India. In: SEG technical program expanded abstracts, pp. 3274–3278,  https://doi.org/10.1190/segam2015-5858683.1
  68. Vijaya Kumar, K., Chavan, C., Sawant, S., Naga Raju, K., et al. (2010). Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan volcanic province, India: Implications for the mantle and magma chamber processes. Contributions to Mineralogy and Petrology, 159, 839–862.CrossRefGoogle Scholar
  69. Volarovitch, M. P., & Gurvitch, A. S. (1957). Investigation of dynamic moduli of elasticity for rocks in relation to temperature. Bulletin Academy of Sciences, USSR Geophysics Series, 4, 1–9.Google Scholar
  70. Walker, G. P. (1993). Basaltic-volcano systems. In: H. M. Richard, T. Alabaster, N. B. W. Harris, & C. R. Neary (Eds.), Magmatic processes and plate tectonics (pp. 3–38). Geological Society Special Publication no. 76.Google Scholar
  71. Weiner, A. T., Manghnani, M. H., & Raj, R. (1987). Internal friction in tholeiitic basalts. Journal of Geophysics Research, 92(11), 635–643.Google Scholar
  72. Wepfer, W. W. (1989). Application of laboratory velocities and attenuation data to the Earth’s crust. Ph.D. Thesis, Purdue University, West Lafayette, IN.Google Scholar
  73. Wepfer, W. W., & Christensen, N. I. (1990). Compressional wave attenuation in oceanic basalts. Journal of Geophysical Research, 95, 431–439.CrossRefGoogle Scholar
  74. Wepfer, W. W., & Christensen, N. I. (1991). Q-structure of the oceanic crust. Marine Geophysical Researches, 13(3), 227–237.  https://doi.org/10.1007/BF00369151.CrossRefGoogle Scholar
  75. White, D. J., & Clowes, R. M. (1994). Seismic attenuation structure beneath the Juan de Fuca ridge from tomographic inversion of amplitudes. Journal of Geophysical Research, 99, 3043–3056.CrossRefGoogle Scholar
  76. Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional sliding. Geophysics, 47, 1–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia
  2. 2.Academy for Scientific and Innovative Research (AcSIR), CSIR-NGRIHyderabadIndia
  3. 3.Department of GeologyUniversity of DelhiDelhiIndia

Personalised recommendations