The Gramian Method of Joint Inversion of the Gravity Gradiometry and Seismic Data
- 52 Downloads
Abstract
Integration of multimodal geophysical data provides better constraints on the results of inversion, thus helping to obtain the most reliable information about the structure and composition of the target. The Gramian method of joint inversion uses a Gramian stabilizer to increase the correlation between the different physical parameters of the inverse model and their attributes or transforms. This paper applies the Gramian method to a joint inversion of the gravity gradiometry and seismic data with rock physics and structural constraints. In the first case we construct the Gramian stabilizer, which enforces the petrophysical relationship between the physical parameters to constrain the recovered models. In the second case, we incorporate the structural constraints in the joint inversion via a Gramian stabilizer of the gradients of velocity and density. In this case, the Gramian forces the vectors of the gradients of different model parameters to be parallel, thus implementing the structural constraints. The Gramian method of joint inversion is implemented using the Tikhonov regularization and the re-weighted conjugate gradient method. The approach is illustrated by synthetic model studies, which include a complicated SEG model of a salt dome structure located in a complex environment.
Keywords
Joint inversion seismic gravity Gramian constraintsNotes
Acknowledgements
The authors acknowledge support from the University of Utah’s Consortium for Electromagnetic Modeling and Inversion (CEMI) and TechnoImaging. We would like to thank Mr. Shihang Feng and Dr. Yue Zhu for their help with this research. The authors also thank Dr. Daniele Colombo and the other two anonymous reviewers for their valuable suggestions, which helped to improve the manuscript.
References
- Abubakar, A., Gao, G., Habashy, T. M., & Liu, J. (2012). Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data. Inverse Problems, 28(5), 055016.CrossRefGoogle Scholar
- Aki, K., & Richards, P. G. (2009). Quantitative seismology. Mill Valley: University Science Books.Google Scholar
- Bleistein, N. (2012). Mathematical methods for wave phenomena. Cambridge: Academic Press.Google Scholar
- Brekhovskikh, L. M. (1976). Mathematical methods for wave phenomena. Cambridge: Academic Press.Google Scholar
- Chen, J., Hoversten, G. M., Vasco, D., Rubin, Y., & Hou, Z. (2007). A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics, 72(2), WA85–WA95.CrossRefGoogle Scholar
- Colombo, D., & De Stefano, M. (2007). Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging. The Leading Edge, 26(3), 326–331.CrossRefGoogle Scholar
- Colombo, D., Mantovani, M., Hallinan, S., & Virgilio, M. (2008). Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: A CRB field study. SEG Technical Program Expanded Abstracts, 2008, 2674–2678.Google Scholar
- Colombo, D., & Rovetta, D. (2018). Coupling strategies in multiparameter geophysical joint inversion. Geophysical Journal International, 215(2), 1171–1184.CrossRefGoogle Scholar
- De Stefano, M., Golfré Andreasi, F., Re, S., Virgilio, M., & Snyder, F. F. (2011). Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging. Geophysics, 76(3), R69–R80.CrossRefGoogle Scholar
- Dell’Aversana, P. (2014). Cognition in geosciences—The feeding loop between geo-disciplines, cognitive sciences and epistemology. Cambridge: Academic Press.Google Scholar
- French, W. (1974). Two-dimensional and three-dimensional migration of model experiment reflection profiles. Geophysics, 39, 265–277.CrossRefGoogle Scholar
- Gallardo, L. A., Fontes, S. L., Meju, M. A., Buonora, M. P., & Lugão, P. P. (2012). Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin, offshore Brazil. Geophysics, 77(5), B237–B251.CrossRefGoogle Scholar
- Gallardo, L. A., & Meju, M. A. (2003). Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophysical Research Letters, 30(13), 1–4.CrossRefGoogle Scholar
- Gallardo, L. A., & Meju, M. A. (2004). Joint two-dimensional DC resistivity and seismic travel-time inversion with cross-gradients constraints. Journal of Geophysical Research: Solid Earth, 109(B03311), 1–11.Google Scholar
- Gallardo, L. A., & Meju, M. A. (2007). Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3), 1261–1272.CrossRefGoogle Scholar
- Gallardo, L. A., & Meju, M. A. (2011). Structure-coupled multi-physics imaging in geophysical sciences. Reviews of Geophysics, 49(1), RG1003.CrossRefGoogle Scholar
- Gallardo, L. A., Meju, M. A., & Pérez-Flores, M. A. (2005). A quadratic programming approach for joint image reconstruction: mathematical and geophysical examples. Inverse Problems, 21(2), 435.CrossRefGoogle Scholar
- Gao, G., Abubakar, A., & Habashy, T. M. (2012). Joint petrophysical inversion of electromagnetic and full-waveform seismic data. Geophysics, 77(3), WA3–WA18.CrossRefGoogle Scholar
- Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780.CrossRefGoogle Scholar
- Haber, E., & Oldenburg, D. (1997). Joint inversion: A structural approach. Inverse Problems, 13(1), 63–67.CrossRefGoogle Scholar
- Hoversten, G. M., Cassassuce, F., Gasperikova, E., Newman, G. A., Chen, J., Rubin, Y., et al. (2006). Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics, 71(3), C1–C13.CrossRefGoogle Scholar
- Hoversten, G. M., Gritto, R., Washbournez, J., & Daley, T. (2003). Pressure and fluid saturation prediction in a multicomponent reservoir using combined seismic and electromagnetic imaging. Geophysics, 68(5), 1580–1591.CrossRefGoogle Scholar
- Hu, W. Y., Abubakar, A., & Habashy, T. M. (2009). Joint electromagnetic and seismic inversion using structural constraints. Geophysics, 74(6), R99–R109.CrossRefGoogle Scholar
- Jegen, M. D., Hobbs, R. W., Tarits, P., & Chave, A. (2009). Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf. Earth and Planetary Science Letters, 282(1–4), 47–55.CrossRefGoogle Scholar
- Lelièvre, P. G., Farquharson, C. G., & Hurich, C. A. (2012). Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1–K15.CrossRefGoogle Scholar
- Lippmann, B. A., & Schwinger, J. (1950). Variational principles for scattering processes I. Physical Review Letters, 79(3), 469.Google Scholar
- Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. S. (2017). Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion. Journal of Computational Physics, 346, 318–339.CrossRefGoogle Scholar
- Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. S. (2018). Acoustic 3D modeling by the method of integral equations. Computers and Geosciences, 111, 223–234.CrossRefGoogle Scholar
- Meju, M. A., & Gallardo, L. A. (2016). Structural coupling approaches in integrated geophysical imaging. In M. Moorkamp, P. G. Lelièvre, N. Linde, & A. Khan (Eds.), Integrated imaging of the earth: Theory and applications (Vol. 218, pp. 49–67). Hoboken: Wiley.CrossRefGoogle Scholar
- Meqbel, N. M., & Ritter, O. (2012). New weighting schemes for joint inversion of land magnetotelluric and controlled source EM data. AGU Fall Metting Abstracts.Google Scholar
- Moorkamp, M., Heincke, B., Jegen, M., Robert, A. W., & Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184(1), 477–493.CrossRefGoogle Scholar
- Moorkamp, M. (2017). Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth: A tutorial and review. Surveys in Geophysics, 38(5), 935–962.CrossRefGoogle Scholar
- Pica, A., Diet, L. P., & Tarantola, A. (1990). Nonlinear inversion of seismic reflection data in a laterally invariant medium. Geophysics, 55, 284–292.CrossRefGoogle Scholar
- Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Sunwall, D., Cox, L., & Zhdanov, M. S. (2013). Joint 3D inversion of time- and frequency- domain airborne electromagnetic data. SEG Technical Program Expanded Abstracts, 2013, 713–717.Google Scholar
- Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.CrossRefGoogle Scholar
- Tarantola, A. (2004). Inverse problem theory (1st ed.). Philadelphia: SIAM.Google Scholar
- Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problems (Vol. 36). Amsterdam: Elsevier.CrossRefGoogle Scholar
- Zhdanov, M. S., Gribenko, A. V., & Wilson, G. (2012a). Generalized joint inversion of multimodal geophysical data using Gramian constraints. Geophysical Research Letters, 39(9), L09301.CrossRefGoogle Scholar
- Zhdanov, M. S., Gribenko, A. V., Wilson, G., & Funk, C. (2012b). 3D joint inversion of geophysical data with Gramian constraints: A case study from the Carrapateena IOCG deposit, South Australia. The Leading Edge, 31(11), 1382–1388.CrossRefGoogle Scholar
- Zhdanov, M. S. (2015). Inverse theory and applications in geophysics (Vol. 36). Amsterdam: Elsevier.Google Scholar