Pure and Applied Geophysics

, Volume 175, Issue 1, pp 25–34 | Cite as

The 8 September 2017 Tsunami Triggered by the Mw 8.2 Intraplate Earthquake, Chiapas, Mexico

  • María Teresa Ramírez-HerreraEmail author
  • Néstor Corona
  • Angel Ruiz-Angulo
  • Diego Melgar
  • Jorge Zavala-Hidalgo
Part of the following topical collections:
  1. The September 2017 Chiapas and Central Mexico earthquakes and tsunamis


The 8 September 2017, Mw 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was ~ 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.


Post-tsunami survey Mw 8.2 intraplate earthquake Mexican subduction runup tsunami early warning 



Ramírez-Herrera acknowledges Grant no. PAPIIT IN109117, by Programa de Apoyos de Investigación e Inovación Tecnológica, Universidad Nacional Autónoma de México. We acknowledge help in the field by S. Valente Gutierrez Q., A. Fabián de la Cruz, Armando Loza P., and Prins U. R. Acosta R. We thank Rick Wilson for insightful discussion of the tsunami event. We thank the people of Chiapas coastal communities for their cooperation.

Supplementary material

24_2017_1765_MOESM1_ESM.png (40 kb)
Figure S1. Tsunami waveform data fits. Black line is the observed, red line is modeled. Peak amplitudes in meters are shown next to each waveform (PNG 39 kb)
24_2017_1765_MOESM2_ESM.tiff (15.4 mb)
Figure S2. Static deformation analysis based on the tide gauges near the event. For each of the four stations array, the upper panel shows on red line the raw signal referenced to the zero-sea level; the black line corresponds to the low-pass filtered signal. The dashed lines correspond to the mean sea level pre- and post-tsunami. The lower panel shows the corresponding de-tided tsunami wave height. Labels of each stations read as follow: Hua – Huatulco; pangel – Puerto Angel; scruz – Salina Cruz; pchis – Puerto Chiapas tide gauge stations (TIFF 15772 kb)


  1. Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 34(9), 1195–1206.CrossRefGoogle Scholar
  2. Centro de Alerta de Tsunami (CAT). (2017). Boletines emitidos por el Centro de Alerta de Tsunamis.
  3. Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. Scholar
  4. Hjorleifsdottir, V., Suarez, G., Iglesias, S., Santoyo, M.A., Villafuerte C.D., Singh, S.K., Ji, C., Cruz-Atienza V.M., Franco-Sanchez, S., & Ando, R. (2017). The 2017/09/08 Mw 8.2 Tehuantepec, Mexico earthquake: A large but compact dip-slip faulting event severing the slab. American Geophysical Union Fall Meeting, Abstract S32D-01, New Orleans, December 11–15, 2017.Google Scholar
  5. International Tsunami Survey Team (ITST) Post-Tsunami Survey Field Guide. (2014). IOC manuals and guides No. 37 (2nd ed.). Paris: UNESCO.Google Scholar
  6. Melgar, D., & Bock, Y. (2013). Near-field tsunami models with rapid earthquake source inversions from land-and ocean-based observations: The potential for forecast and warning. Journal of Geophysical Research Solid Earth, 118(11), 5939–5955.CrossRefGoogle Scholar
  7. Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research, 120(5), 3324–3349.Google Scholar
  8. National Aeronautics and Space Administration (NASA), & Jet Propulsion Laboratory JPL), California Institute of Technology (CALTECH) Advanced Rapid Imaging and Analysis Team. (2017). 2017 09 08 Chiapas Mexico earthquake.
  9. National Oceanic and Atmospheric Administration-National Hurricane Center (NOAA-NHC). (2017). Data Archive. Accessed 30 Sept 2017.
  10. National Research Council (NRC). (2017). Tsunami warning and preparedness: An assessment of the US Tsunami program and the nation’s preparedness efforts. Washington, DC: The National Academy Press. Scholar
  11. National Geophysical Data Center/World Data Service (NGDC/WDS). (2017). Global Historical Tsunami Database. National Geophysical Data Center, NOAA.
  12. Nuñez-Cornu, F., & Ponce, L. (1989). Zonas sísmicas de Oaxaca, México: sismos máximos y tiempos de recurrencia para el periodo 1542–1988. Geofísica Internacional, 28, 4.Google Scholar
  13. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  14. Okuwaki, R., & Yagi, Y. (2017). Rupture process during the Mw 8.1 2017 Chiapas Mexico earthquake: Shallow intraplate normal faulting by slab bending. Geophysical Research Letters. Scholar
  15. Ortiz Huerta L.G., & Ortiz F.M. (2014). ¿Cómo me puedo preparar ante un tsunami? 1a. edición, 2014, Versión Electrónica 2014© Secretaría de Gobernación© Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (ISBN: 978-607-7558-30-9).Google Scholar
  16. Pacific Tsunami Warning Center. (2017). ITIC Tsunami Bulletin Board Tsunami Message Number 1-15, NWs Pacific Tsunami Warning Center Bulletin Sep 8 2017, NOAA. Accessed 11 Sept 2017.
  17. Sanchez, A. J., & Farreras, S. F. (1993). Catalog of tsunamis on the western coast of Mexico (p. 27p). Boulder Colorado: World Data Center, NOAA.Google Scholar
  18. Servicio Mareográfico Nacional (SMN). (2017). Registro de variaciones del nivel del mar en las estaciones del Servicio Mareográfico Nacional causadas por el sismo del 7 de septiembre de 2017 al suroeste de Pijijiapan, Chiapas, Reporte, UNAM, p. 2.
  19. Servicio Sismológico Nacional (SSN). (2017). Sismo de Tehuantepec (2017-09-07 23:49 M8.2), Reporte Especial, Grupo de trabajo del Servicio Sismológico Nacional, UNAM, pp. 1–11.Google Scholar
  20. Talle, C. (2017). La noche del sismo en San Mateo del Mar, 9 de septiembre del 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratorio Universitario de Geofísica AmbientalInstituto de Geografía, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.El Colegio De MichoacánLa PiedadMexico
  3. 3.Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  4. 4.Department of Earth SciencesUniversity of OregonEugeneUSA

Personalised recommendations