Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 6, pp 2351–2379 | Cite as

High Frequency Tail Characteristics in the Coastal Waters off Gopalpur, Northwest Bay of Bengal: A Nearshore Modelling Study

  • P. A. UmeshEmail author
  • Prasad K. Bhaskaran
  • K. G. Sandhya
  • T. M. Balakrishnan Nair
Article
  • 234 Downloads

Abstract

Over the years, continued uncertainty amid − 4 and − 5 frequency exponent representation observed in the slope of the high-frequency tail of a wind-wave frequency spectrum is a major concern. To comprehend the nature of the high-frequency tail an effort has been made to assess the slope of the high-frequency tail with measured data recorded for 3 years off Gopalpur. The study demonstrates that the high-frequency slope of the spectra varied seasonally in the range of n = − 2.13 to − 3.48. The swell and wind sea parameters calculated by separation frequency method, shows that 64.6% of waves were dominant by swell and the rest 34.9% by sea annually. Single, double and multi-peaked spectra occur 12.23, 71.80 and 15.37% annually. To simulate wave spectra, the nested WAM-SWAN model is forced with ERA-Interim winds and 1D wave spectra comparisons, when performed, proved to be encouraging. From the comparisons of measured and theoretical spectra it is concluded that JONSWAP model could not describe the high-frequency tail of measured spectrum, as indicated by the very high Scatter Index ranging from 0.24 to 1.44. Whether there exists a correct slope for the high-frequency tail is still a question. Moreover, the philosophy of a unique slope at any coastal location remains uncertain for the wave modelling community.

Keywords

Shallow water waves Wave spectrum high-frequency tail WAM-SWAN validation JONSWAP Gopalpur coastal spectra 

Notes

Acknowledgements

The authors would like to thank the Director, ESSO-INCOIS, Hyderabad under the Ministry of Earth Sciences, Government of India for the support and encouragement. The efforts made for wave rider buoy data collection by the team including Mr. Arun N, Mr. Jeyakumar, and Mr. Rameshkumar of ESSO-INCOIS is thankfully acknowledged. We would also like to thank the anonymous reviewers for their valuable suggestions for improving the manuscript.

References

  1. Aboobacker, V. M., Vethamony, P., Sudheesh, K., & Rupali, S. (2009). Spectral characteristics of the nearshore waves off Paradip, India during monsoon and extreme events. Natural Hazards, 49, 311–323.CrossRefGoogle Scholar
  2. Acar, S. O. (1983). Statistical analysis of wind waves at Ordu and Akkuyu (Mersin). Master’s Thesis, Middle East Technical University, Turkey.Google Scholar
  3. Amrutha, M. M., Kumar, V. S., Anopop, T. R., Nair, T. M. B., Nherakkol, A., & Jeyakumar, C. (2014). Waves off Gopalpur, Northern Bay of Bengal during the cyclone PHAILIN. Annales Geophysicae, 32, 1073–1083.CrossRefGoogle Scholar
  4. Badulin, S. I., Babanin, A. V., Zakharov, V. E., & Resio, D. (2007). Weakly turbulent laws of wind-wave growth. Journal of Fluid Mechanics, 591, 339–378.CrossRefGoogle Scholar
  5. Nair, T. M. B., Remya, P. G., Harikumar, R., Sandhya, K. G., Sirisha, P., Srinivas, K., et al. (2014). Wave forecasting and monitoring during very severe cyclone Phailin in the Bay of Bengal. Current Science, 106, 1121–1125.Google Scholar
  6. Banner, M. L. (1990). Equilibrium spectra of wind-waves. Journal of Physical Oceanography, 20(7), 966–984.CrossRefGoogle Scholar
  7. Banner, M. L. (1991). On the directional behavior of the equilibrium wave number spectrum: Implications for the equilibrium frequency spectrum. In R. C. Beal (Ed.), Directional ocean wave spectra (pp. 39–45). Baltimore: Johns Hopkins University Press.Google Scholar
  8. Bidlot, J. R., Li, J. G., Wittmann, P., Faucher, M., Chen, H. S., Lefevre, J. M., et al. (2007). Inter-comparison of operational wave forecasting systems. In: 10th international workshop on wave hindcasting and forecasting and coastal hazard symposium, North Shore, Oahu, Hawaii, 11–16 November 2007.Google Scholar
  9. Booij, N., Holthuijsen, L. H., & Ris, R. C. (1999). A third-generation wave model for coastal regions. 1. Model description and validation. Journal of Geophysical Research, 104(7), 649–7666.Google Scholar
  10. Cavaleri, L., Alves, J. H. G. M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H. C., Hwang, P., Janssen, P. A. E. M., Janssen, T., Lavrenov, I. V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W. E., Sheremet, A., McKee Smith, J., Tolman, H. L., van Vledder, G., Wolf, J. & Young, I. (2007). Wave modeling—the state of the art. Progress in Oceanography, 75(4), 603–674.Google Scholar
  11. Cavaleri, L., Fox-Kemper, B., & Hemer, M. (2012). Wind waves in the coupled climate system. Bulletin of the American Meteorological Society, 93, 1651–1661.CrossRefGoogle Scholar
  12. Chakrabarti, S. K. (2005). Handbook of offshore engineering (Vol. 1, p. 61). Oxford: Ocean Engineering Series, Elsevier.Google Scholar
  13. Chandramohan, P., & Nayak, B. U. (1994). A study for the improvement of Chilka lake tidal inlet, east coast of India. Journal of Coastal Research, 10, 909–918.Google Scholar
  14. Chen, G., Chapron, B., Ezraty, R., & Vandemark, D. (2002). A global view of swell and wind-sea climate in the ocean by satellite altimeter and scatterometer. Journal of Atmospheric and Oceanic Technology, 19(11), 1849–1859.CrossRefGoogle Scholar
  15. Clauset, A., RohillaShalizi, C., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. Society for Industrial and Applied mathematics (SIAM Review), 51(4), 661–703.Google Scholar
  16. Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of Royal Meteorological Society, 137, 553–597.CrossRefGoogle Scholar
  17. Donelan, M. A., Hamilton, J., & Hui, W. H. (1985). Directional spectra of wind generated waves. Philosophical Transactions of the Royal Society A, 315, 509–562.CrossRefGoogle Scholar
  18. Ewans, K. C., & Kibblewhite, A. C. (1990). An examination of fetch-limited wave growth off the west-coast of New Zealand by a comparison with the JONSWAP results. Journal of Physical Oceanography, 20(9), 1278–1296.CrossRefGoogle Scholar
  19. Gagnaire-Renou, E., Benoit, M., & Forget, P. (2010) Ocean wave spectrum properties as derived from quasiexact computations of nonlinear wave-wave interactions. Journal of Physical Oceanography, 115, C12058,  https://doi.org/10.1029/2009JC005665.
  20. Gilhousen, D.B., & Hervey, R. (2001). Improved estimates of swell from Moored Buoys. Proceedings of the fourth international symposium WAVES 2001. ASCE: Alexandria, VA, pp. 387–393.Google Scholar
  21. Guedes Soares, C. (1991). Representation of double-peaked sea wave spectra. Ocean Engineering, 18(1/2), 167–171.CrossRefGoogle Scholar
  22. Gunson, J., & Symonds, G. (2014). Spectral evolution of nearshore wave energy during a sea breeze cycle. Journal of Physical Oceanography, 44(12), 3195–3208.CrossRefGoogle Scholar
  23. Gunther, H., Hasselmann, S., & Jansen, P. A. E. M. (1992). Wamodel, Cycle-4 (revised version). Technical Report No. 4, DautschesKlimaRechenZentrum, Hamburg.Google Scholar
  24. Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., et al. (1973). Measurements of wind-wave growth and swell d ecay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrograph Z, A12, 95.Google Scholar
  25. Hersbach, H., & Janssen, P. A. E. M. (1999). Improvements of the short fetch behavior in the WAM model. Journal of Atmospheric and Oceanic Technology, 16, 884–892.CrossRefGoogle Scholar
  26. Houlthuijsen, L. H. (2007). Waves in oceanic and coastal waters. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Khandekar, M. L. (1989). Operational analysis and prediction of ocean wind waves (p. 214). New York: Springer.Google Scholar
  28. Kitaigordskii, S. A., Krasitskii, V. P., & Zaslavskii, M. M. (1975). On Phillips theory of equilibrium range in the spectra of wind generated gravity waves. Journal of Physical Oceanography, 5, 410–420.CrossRefGoogle Scholar
  29. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and modelling of ocean waves (p. 532). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14, 1271–1285.CrossRefGoogle Scholar
  31. Liu, P. C. (1989) On the slope of the equilibrium range in the frequency spectrum of wind waves. Journal of Geophysical Research, 94(C4), 5017–5023.Google Scholar
  32. Long, C. E., & Resio, D. T. (2007). Wind waves spectral observations in Currituck Sound, North Carolina. Journal of Geophysical Research, 112, C05001.CrossRefGoogle Scholar
  33. Manu, J., Jena, B. K., & Sivakholundu, K. M. (2015). Surface current and wave measurement during cyclone Phailin by high frequency radars along the Indian coast. Current Science, 108(3), 405–409.Google Scholar
  34. Mishra, P., Patra, S. K., Bramha, S., Mohanty, P. K., Panda, U. S., Rao, et al. (2010). Wave characteristic and tidal regime off Gopalpur, east coast of India and its implications in coastal erosion. In: Proceedings of the Joint Indo-Brazil workshop on coastal processes and modeling relevant to understanding shoreline changes, Chennai, India, pp. 22–32.Google Scholar
  35. Mishra, P., Patra, S. K., Murthy, M. V. R., Mohanty, P. K., & Panda, U. S. (2011). Interaction of monsoonal wave, current and tide near Gopalpur, east coast of India, and their impact on beach profile: A case study. Natural Hazards, 59, 1145–1159.CrossRefGoogle Scholar
  36. Mishra, P., Pradhan, U. K., Panda, U. S., Patra, S. K., Murthy, M. V. R., Seth, B., et al. (2014). Field measurements and numerical modelling of nearshore processes at an open coast port on the east coast of India. Indian Journal of Ge-Marine Sciences, 43(7), 1272–1280.Google Scholar
  37. Mitsuyasu, H., et al. (1980). Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10(2), 286–296.CrossRefGoogle Scholar
  38. Mohanty, P. K., Patra, S. K., Bramha, S., Seth, B., Pradhan, U. K., Behera, B., et al. (2012). Impact of groins on beach morphology: A case study near Gopalpur Port, east coast of India. Journal of Coastal Research, 28(1), 132–142.CrossRefGoogle Scholar
  39. Mohapatra, M., & Mohanty, U. C. (2004). Some characteristics of low pressure systems and summer monsoon rainfall over Orissa. Current Science, 87, 1245–1255.Google Scholar
  40. Moon, I. J., & Oh, I. S. (1998). A study of the characteristics of wave spectra over the seas around Korea by using a parametric spectrum method. Acta Oceanogr Taiwan, 37(1), 31–46.Google Scholar
  41. Nayak, S., Bhaskaran, P. K., Venkatesan, R., & Dasgupta, S. (2013). Modulation of local wind waves at Kalpakkam from remote forcing effects of Southern Ocean swells. Ocean Engineering, 64, 23–35.CrossRefGoogle Scholar
  42. Patra, S. K., & Jena, B. K. (2012). Sea and swell off Cuddalore, East coast of India. In: Proceedings of the 11th biennial of pan ocean remote sensing conference (PORSEC), Kochi, India.Google Scholar
  43. Phillips, O. M. (1958). The equilibrium range in the spectrum of wind-generated waves. Journal of Fluid Mechanics, 4(4), 426–433.CrossRefGoogle Scholar
  44. Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity-waves. Journal of Fluid Mechanics, 156, 505–531.CrossRefGoogle Scholar
  45. Pierson, W. J., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas. Journal of Geophysical Research, 69, 5181–5203.CrossRefGoogle Scholar
  46. Piscopia, R. (2003). On the optimal fitting of a ten-parameter model to observed wave spectra. In: Proceedings of the 13th international offshore and polar engineering conference, Honolulu, Hawaii, USA, pp. 233–240.Google Scholar
  47. Ris, R. C., Holthuijsen, L. H., & Booij, N. (1999). A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research, Oceans, C4, 7667–7681.CrossRefGoogle Scholar
  48. Rodriguez, G., & Soares, C. G. (1999). Uncertainty in the estimation of the slope of the high frequency tail of wave spectra. Applied Ocean Research, 21(4), 207–213.CrossRefGoogle Scholar
  49. Rodriguez, G., Soares, C. G., & Ocampo-Torres, F. J. (1999). Experimental evidence of the transition between power law models in the high frequency range of the gravity wave spectrum. Coastal Engineering, 38(4), 249–259.CrossRefGoogle Scholar
  50. Sandhya, K. G., Nair, T. M. B., Bhaskaran, P. K., Sabique, L., Arun, N., & Jeykumar, K. (2014). Wave forecasting system for operational use and its validation at coastal Puducherry, east coast of India. Ocean Engineering, 80, 64–72.CrossRefGoogle Scholar
  51. Sandhya, K. G., Remya, P. G., Nair, T. M. B., & Arun, N. (2016). On the co-existence of high-energy low-frequency waves and locally-generated cyclone waves off the Indian eastcoast. Ocean Engineering, 111, 148–154.CrossRefGoogle Scholar
  52. Sanil Kumar, V., Anand, N. M., Kumar, K. A., & Mandal, S. (2003). Multipeakedness and groupiness of shallow water waves along Indian coast. Journal of Coastal Research, 19, 1052–1065.Google Scholar
  53. Sanil Kumar, V., & Naseef, T. M. (2015). Performance of ERA-Interim wave data in the nearshore waters around India. Journal of Atmospheric and Oceanic Technology, 32(6), 1257–1269.CrossRefGoogle Scholar
  54. Semedo, A., Suselj, K., Rutgersson, A., & Sterl, A. (2011). A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461–1479.CrossRefGoogle Scholar
  55. Siadatmousavi, S. M., Jose, F., & Stone, G. W. (2012). On the importance of high frequency tail in third generation wave models. Coastal Engineering, 60, 248–260.CrossRefGoogle Scholar
  56. Sirisha, P., Remya, P. G., Nair, T. M. B., & Venkateswara Rao, B. (2015). Numerical simulation and observations of very severe cyclone generated surface wave fields in the north Indian Ocean. Journal of Earth System Sciences, 124(8), 1639–1651.CrossRefGoogle Scholar
  57. Sisir, K. P., Mishra, P., Mohanty, P. K., Pradhan, U. K., Panda, U. S., Murthy, M. V. R., et al. (2016). Cyclone and monsoonal wave characteristics of northwestern Bay of Bengal: Long-term observations and modeling. Natural Hazards, 82, 1051–1073.CrossRefGoogle Scholar
  58. Suresh, R. R. V., Annapurnaiah, K., Reddy, K. G., Lakshmi, T. N., & Nair, T. M. B. (2010). Wind sea and swell characteristics off east coast of India during southwest monsoon. International Journal of Oceans and Oceanography, 4(1), 35–44.Google Scholar
  59. SWAN Team. (2012). SWAN User Manual. SWAN Cycle III version 40.85. Delft University of Technology, Technical Documentation, Delft, The Netherlands, 94 pp. http://www.swan.tudelft.nl.
  60. Toba, Y. (1973). Local balance in the air-sea boundary process III. Journal of the Oceanographical Society of Japan, 29, 209–220.CrossRefGoogle Scholar
  61. Tolman, H. L., Banner, M. L., & Kaihatu, J. M. (2013). The NOPP operational wave model improvement project. Ocean Modelling, 70, 2–10.CrossRefGoogle Scholar
  62. Torsethaugen, K., & Haver, S. (2004). Simplified double peak spectral model for ocean waves. Proceedings of the ISOPE Conference, 3, 76–84.Google Scholar
  63. Violante-Carvalho, N., Parente, C. E., Robinson, I. S., & Nunes, L. M. P. (2002). On the growth of wind generated waves in a swell dominated region in the South Atlantic. Journal of Offshore Mechanics and Arctic Engineering, 124, 14–21.CrossRefGoogle Scholar
  64. Yilmaz, N. (2007). Spectral characteristics of wind waves in the Eastern Black Sea. Turkey, Ankara, Middle East Technical University, Ph.D. Thesis, p. 108.Google Scholar
  65. Yilmaz, N., & Ozhan, E. (2014). Characteristics of the frequency spectra of wind-waves in eastern Black sea. Ocean Dynamics, 64, 1419–1429.CrossRefGoogle Scholar
  66. Young, I. R., & Babanin, A. V. (2006). Spectral distribution of energy dissipation of wind generated waves due to dominant wave breaking. Journal of Physical Oceanography, 36(3), 376–394.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • P. A. Umesh
    • 1
    Email author
  • Prasad K. Bhaskaran
    • 1
  • K. G. Sandhya
    • 2
  • T. M. Balakrishnan Nair
    • 2
  1. 1.Department of Ocean Engineering and Naval ArchitectureIndian Institute of Technology KharagpurKharagpur - 721 302India
  2. 2.Information Services and Ocean Sciences Group, ESSO-Indian National Centre for Ocean Information ServicesMinistry of Earth SciencesHyderabadIndia

Personalised recommendations