Pure and Applied Geophysics

, Volume 174, Issue 12, pp 4489–4499 | Cite as

A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

  • Z. PodrascaninEmail author
  • I. Balog
  • A. Jankovic
  • Z. Mijatovic
  • Z. Nadj


In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer’s facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.


Total ozone column (TOC) MICROTOPS II satellite measurements OMI instrument calibration 



This paper was realized as a part of the project “Studying climate change and its influence on the environment: impacts, adaptation and mitigation” (no. III43007), which is financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research over the period 2011–2017 and the project III 43008 financed by Republic Ministry of Education, Science and Technological Development.


  1. Antón, M., López, M., Vilaplana, J. M., Kroon, M., McPeters, R., Bañón, M., et al. (2009). Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. Journal of Geophysical Research, 114, D14307.CrossRefGoogle Scholar
  2. Balis, D., Kroon, M., Koukouli, M. E., Brinksma, E. J., Labow, G., Veefkind, J. P., et al. (2007a). Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. Journal of Geophysical Research, 112, D24S46.CrossRefGoogle Scholar
  3. Balis, D., Lambert, J. C., Roozendael, M. V., Spurr, R., Loyola, D., Livschitz, Y., et al. (2007b). Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4:2. Ground-based validation and comparisons with TOMS V7/V8. Journal of Geophysical Research, 112, D07307.CrossRefGoogle Scholar
  4. Bhartia, P. K., McPeters, R. D., Stolarski, R. S., Flynn, L. E., & Wellemeyer, C.G. 2004a. A quarter century of ozone observations by SBUV and TOMS. In Proceedings of the XX quadrennial ozone symposium, Kos, Greece (pp. 89–90).Google Scholar
  5. Bhartia, P. K., Wellemeyer, C. G., Taylor, S. L., Nath, N., & Gopolan, A. 2004b. Solar backscatter ultraviolet (SBUV) version 8 profile algorithm. In Proceedings of the XX quadrennial ozone symposium, Kos, Greece (pp. 295–296).Google Scholar
  6. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., et al. (1999). SCIAMACHY-mission objectives and measurement modes. Journal of Atmospheric Science, 56(2), 127–150.CrossRefGoogle Scholar
  7. Bowman, K. P. (1989). Global patterns of the quasi-biennial oscillation in total ozone. Journal of Atmospheric Sciences, 46(21), 3328–3343. doi: 10.1175/1520-0469(1989)046<3328:GPOTQB>2.0.CO;2.CrossRefGoogle Scholar
  8. Bowman, K. P., & Krueger, A. J. (1985). A global climatology of total ozone from the Nimbus 7 total ozone mapping spectrometer. Journal of Geophysical Research: Atmospheres, 90(D5), 7967–7976. doi: 10.1029/JD090iD05p07967.CrossRefGoogle Scholar
  9. Brewer, A. W. (1973). A replacement for the Dobson spectrophotometer? Pure and Applied Geophysics, 106, 919–927.CrossRefGoogle Scholar
  10. Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., et al. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of Atmospheric Science, 56, 151–175.CrossRefGoogle Scholar
  11. Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–593.CrossRefGoogle Scholar
  12. Dobson, G. M. B. (1931). A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proceedings of the Physical Society, 43, 324–339.CrossRefGoogle Scholar
  13. Fioletov, V. E. (2003). Seasonal persistence of midlatitude total ozone anomalies. Geophysical Research Letters, 30(7), 1417.CrossRefGoogle Scholar
  14. Fioletov, V. E., Labow, G., Evans, R., Hare, E. W., Kohler, U., McElroy, C. T., et al. (2008). Performance of the ground-based total ozone network assessed using satellite data. Journal of Geophysical Research, 113, D14313.CrossRefGoogle Scholar
  15. Forster, P., & Shine, K. (1997). Radiative forcing and temperature trends from stratospheric ozone changes. Journal of Geophysical Research, 102, 10841–10855. doi: 10.1029/96JD03510.CrossRefGoogle Scholar
  16. Gómez-Amo, J. L., Estellés, V., di Sarra, A., Pedrós, R., Sferlazzo, D., Utrillas, M. P., et al. (2013). A comparison of Microtops II and satellite ozone measurements in the period 2001–2011. Journal of Atmospheric and Solar-Terrestrial Physics, 94, 5–12.CrossRefGoogle Scholar
  17. Gómez-Amo, J. L., Estellés, V., diSarra, A., Pedrós, R., Utrillas, M. P., Martínez-Lozano, J. A., et al. (2012). Operational considerations to improve the performance of total ozone content by Microtops II measurements. Atmospheric Measurement Techniques, 5, 759–769.CrossRefGoogle Scholar
  18. Köhler, U. (1999). A comparison of the new filter ozonometer Microtops II with Dobson and Brewer spectrometers at Hohenpeissenberg. Geophysical Research Letters, 26, 1385–1388.CrossRefGoogle Scholar
  19. Komhyr, W. D. (1980). Operations handbook—Ozone observations with a Dobson spectrometer. Geneva: World Meteorological Organization.Google Scholar
  20. Komhyr, W. D., Grass, R. D., & Leonard, R. K. (1989). Dobson spectrophotometer 83: A standard for total ozone measurement, 1962–1987. Journal of Geophysical Research: Atmospheres, 94, 9847–9861.CrossRefGoogle Scholar
  21. Lacis, A. A., Wuebbles, D. J., & Logan, J. A. (1990). Radiative forcing of climate by changes in the vertical distribution of ozone. Journal of Geophysical Research, 95, 9971–9981. doi: 10.1029/JD095iD07p09971.CrossRefGoogle Scholar
  22. Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., et al. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1101.CrossRefGoogle Scholar
  23. Mateos, D., Antón, M., & Vaquero, J. M. (2014a). Influence of solar eclipse of November 3rd, 2013 on the total ozone column over Badajoz, Spain. Journal of Atmospheric and Solar-Terrestrial Physics, 112, 43–46. doi: 10.1016/j.jastp.2014.02.005.CrossRefGoogle Scholar
  24. Mateos, D., Pace, G., Meloni, D., Bilbao, J., di Sarra, A., Casasanta, G., et al. (2014b). Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation. Journal of Geophysical Research. doi: 10.1002/2013JD020309.Google Scholar
  25. Morys, M., Mims, F. M., Hagerup, S., Anderson, S. E., Baker, A., Kia, J., et al. (2001). Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. Journal of Geophysical Research: Atmospheres, 106, 14573–14582.CrossRefGoogle Scholar
  26. Pandey, R., & Vyas, B. M. (2004). Study of total column ozone, precipitable water content and aerosol optical depth at Udaipur a tropical station. Current Science, 86, 305–309.Google Scholar
  27. Silva, A. A., & Tomaz, L. M. (2012). Total ozone column measurements for an urban, tropical site in the Southern Hemisphere with a Microtops II. Journal of Atmospheric and Solar-Terrestrial Physics., 77, 161–166. doi: 10.1016/j.jastp.2011.12.014.CrossRefGoogle Scholar
  28. Veefkind, J. P., Haan, J. F., Brinksma, E. J., Kroon, M., & Levelt, P. F. (2006). Total ozone from the ozone monitoring instrument (OMI) using the OMI DOAS technique. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1239–1244.CrossRefGoogle Scholar
  29. Wespes, C., Hurtmans, D., Emmons, L. K., Safieddine, S., Clerbaux, C., Edwards, D. P., et al. (2016). Ozone variability in the troposphere and the stratosphere from the first 6 years of IASI observations (2008–2013). Atmospheric Chemistry and Physics, 16, 5721–5743. doi: 10.5194/acp-16-5721-2016.CrossRefGoogle Scholar
  30. WMO (2011). Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project—Report No. 52. World Meteorological Organization, Geneva.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Z. Podrascanin
    • 1
    Email author
  • I. Balog
    • 1
  • A. Jankovic
    • 2
  • Z. Mijatovic
    • 1
  • Z. Nadj
    • 1
  1. 1.Department of Physics, Faculty of SciencesUniversity of Novi SadNovi SadRepublic of Serbia
  2. 2.Faculty of Architecture, Civil Engineering and GeodesyUniversity of Banja LukaBanja LukaBosnia and Herzegovina

Personalised recommendations