Pure and Applied Geophysics

, Volume 174, Issue 8, pp 3313–3323 | Cite as

Meteotsunamis Occurring Along the Southwest Coast of South America During an Intense Storm

  • Matías Carvajal
  • Manuel Contreras-LópezEmail author
  • Patricio Winckler
  • Ignacio Sepúlveda


In this paper, we report meteotsunamis occurring along the Chilean and Peruvian coasts. These atmospherically induced tsunami-like oscillations were instrumentally recorded during an intense storm that affected central Chile on August 8th, 2015. The storm was characterized by strong winds, a locally unprecedented atmospheric low pressure and intense sea-level oscillations which caused six casualties and severe damage to infrastructure along ~500 km of coastline. The meteotsunamis are analyzed on both regional and local scales. On the regional scale, the temporal behavior and spatial behavior were discussed from the analysis of various tide gauges covering roughly 3000 km of the southwest coast of South America, between Callao, in central Peru, and Lebu, in southern Chile. Surprisingly, the phenomenon was recorded in the majority of the tide gauges in this vast region. On the area constrained by the storm region, a more detailed analysis is performed. We confirm the atmospheric origin of these intense sea-level oscillations by further analyzing meteorological records of air pressure and wind. An attempt to explain local (shelf and harbor) resonant mechanisms is achieved by means of wavelet analysis, while Greenspan and Proudman resonance mechanisms are superficially analyzed. Our results indicate that large meteotsunamis can occur along the west coast of South America and, when combined with other meteooceanographic conditions, may cause damage levels comparable to those resulting from Mw >8 earthquake generated tsunamis.


Tsunami wavelet analysis storm of August 8th 2015 in central Chile 



The authors would like to thank the collaboration of the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA) for providing the sea-level records at 5 tidal stations. M. Carvajal thanks the Millennium Nucleus for the Earthquake cycle along subduction zones (CYCLO), Chile, and Dr. Samuel Hormazábal (PUCV) for his advice and encouragement on the use of time–frequency analysis techniques. P. Winckler would like to thank CONICYT (Chile) through its grant FONDECYT 11150003. I. Sepúlveda thanks Fulbright and CONICYT for financial assistance in the form of studentships. We thank the following institutions for providing meteorological data: Fondo de Desarrollo Disciplinario de Medio Ambiente-Facultad de Ingeniería (UPLA), Laboratorio de Meteorología-Instituto de Geografía (PUCV), Estación Costera de Investigaciones Marinas (PUC), Estación Montemar-Facultad de Ciencias del Mar y de Recursos Naturales (UV), Secretaría Regional Ministerial de Medio Ambiente de Valparaíso (MMA), SOPRAVAL, and AGROSUPER. Finally, we would like to deeply thank Alexander Rabinovich, Jadranka Sepic, and two anonymous reviewers for providing useful comments and suggestions that greatly improved the manuscript.


  1. Bechle, A. J., Kristovich, D. A. R., & Wu, C. H. (2015). Meteotsunami occurrences and causes in Lake Michigan. Journal of Geophysical Research: Oceans, 120(12), 8422–8438. doi: 10.1002/2015JC011317.Google Scholar
  2. Candella, R. N. (2009). Meteorologically induced strong seiches observed at Arraial do Cabo, RJ Brazil. Physics and Chemistry of the Earth, 34(17–18), 989–997. doi: 10.1016/j.pce.2009.06.007.CrossRefGoogle Scholar
  3. Contreras-López, M., Winckler, P., Sepúlveda, I., Andaur-Álvarez, A., Cortés-Molina, F., Guerrero, C. J., et al. (2016). Field Survey of the 2015 Chile Tsunami with emphasis on Coastal Wetland and Conservation Areas. Pure and Applied Geophysics, 173(2), 349–367. doi: 10.1007/s00024-015-1235-2.CrossRefGoogle Scholar
  4. DGAC (2016) Dirección General de Aeronáutica Civil. Dirección Meteorológica de Chile 884. Accessed December 11, 2016.
  5. Dragani, W. C., D’Onofrio, E. E., Oreiro, F., Alonso, G., Fiore, M., & Grismeyer, W. (2014). Simultaneous meteorological tsunamis and storm surges at Buenos Aires coast, southeastern South America. Natural Hazards, 74(1), 269–280. doi: 10.1007/s11069-013-0836-2.CrossRefGoogle Scholar
  6. EM-DAT (2017). The International Disaster Database, Centre for Research on the Epidemiology of Disasters, School of Public Health, Université Catholique de Louvain. Accessed March 14, 2017.
  7. Goring, D. G. (2009). Meteotsunami resulting from the propagation of synoptic-scale weather systems. Physics and Chemistry of the Earth, 34(17–18), 1009–1015. doi: 10.1016/j.pce.2009.10.004.CrossRefGoogle Scholar
  8. Greenspan, H. P. (1956). The generation of edge waves by moving pressure distributions. Journal of Fluid Mechanics, 1(06), 574–592.CrossRefGoogle Scholar
  9. Hibiya, T., & Kajiura, K. (1982). Origin of the Abiki phenomenon (a kind of seiche) in Magasaki Bay. Journal of the Oceanographical Society of Japan, 38(3), 172–182. doi: 10.1007/BF02110288.CrossRefGoogle Scholar
  10. Mei, C. C., Stiassnie, M., & Yue, D. K. P. (2005). Theory and applications of ocean surface waves: Nonlinear aspects (Vol. 23). Singapore: World Scientific.Google Scholar
  11. Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Science, 6(6), 1035–1051. doi: 10.5194/nhess-6-1035-2006.CrossRefGoogle Scholar
  12. Munk, W. H. (1950) Origin and generation of waves. In Proceedings 1st International Conference on Coastal Engineering, Long Beach, California. ASCE, pp. 1–4. Accessed March 16, 2017.
  13. Okal, E. A., Visser, J. N., & de Beer, C. H. (2014). The Dwarskersbos, South Africa local tsunami of August 27, 1969: Field survey and simulation as a meteorological event. Natural Hazards, 74(1), 251–268. doi: 10.1007/s11069-014-1205-5.CrossRefGoogle Scholar
  14. Paris, P. J., Walsh, J. P., & Corbett, D. R. (2016). Where the continent ends. Geophysical Research Letters, 43(23), 12208–12216. doi: 10.1002/2016GL071130.CrossRefGoogle Scholar
  15. Pattiaratchi, C., & Wijeratne, E. M. S. (2014). Observations of meteorological tsunamis along the south-west Australian coast. Natural Hazards, 74(1), 281–303. doi: 10.1007/s11069-014-1263-8.CrossRefGoogle Scholar
  16. Pattiaratchi, C., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions A, 373(2053), 20140377. doi: 10.1098/rsta.2014.0377.CrossRefGoogle Scholar
  17. Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929–937. doi: 10.1016/S0098-3004(02)00013-4.CrossRefGoogle Scholar
  18. Pellikka, H., Rauhala, J., Kahma, K. K., Stipa, T., Boman, H., & Kangas, A. (2014). Recent observations of meteotsunamis on the Finnish coast. Natural Hazards, 74(1), 197–215. doi: 10.1007/s11069-014-1150-3.CrossRefGoogle Scholar
  19. Proudman, J. (1929). The Effects on the Sea of Changes in Atmospheric Pressure. Geophysical Journal International, 2(s4), 197–209.CrossRefGoogle Scholar
  20. Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research: Oceans, 102(C6), 12663–12676. doi: 10.1029/97JC00479.CrossRefGoogle Scholar
  21. Raichlen, F. (1966). Harbor resonance. In A. T. Ippen (Ed.), Estuary and Coastline Hydrodynamics (pp. 281–340). New York: McGraw Hill Book Comp.Google Scholar
  22. Šepić, J., Vilibić, I., & Belušić, D. (2009). Source of the 2007 Ist meteotsunami (Adriatic Sea). Journal of Geophysical Research: Oceans, 114, C03016. doi: 10.1029/2008JC005092.Google Scholar
  23. Tolkova, E., & Power, W. (2011). Obtaining natural oscillatory modes of bays and harbors via Empirical Orthogonal Function analysis of tsunami wave fields. Ocean Dynamics, 61(6), 731–751.CrossRefGoogle Scholar
  24. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  25. Vilibić, I. (2008). Numerical simulations of the Proudman resonance. Continental Shelf Research, 28, 574–581. doi: 10.1016/j.csr.2007.11.005.CrossRefGoogle Scholar
  26. Vilibić, I., Monserrat, S., & Rabinovich, A. B. (2015). Editorial: Meteorological tsunamis on the US East Coast and in other regions of the World Ocean. In I. Vilibić, S. Monserrat, & A. B. Rabinovich (Eds.), Meteorological Tsunamis: The U.S. East Coast and other Coastal Regions (pp. 1–9). London: Springer.CrossRefGoogle Scholar
  27. Vilibić, I., & Šepić, J. (2009). Destructive meteotsunamis along the eastern Adriatic coast: Overview. Physics and Chemistry of the Earth, Parts A/B/C, 34(17), 904–917. doi: 10.1016/j.pce.2009.08.004.CrossRefGoogle Scholar
  28. Vilibić, I., & Šepić, J. (2017). Global mapping of nonseismic sea level oscillations at tsunami timescales. Scientific Reports, 7, 40818. doi: 10.1038/srep40818.CrossRefGoogle Scholar
  29. Winckler, P., Contreras-López, M., Beyá, J., & Molina, M. (2017). El temporal del 8 de agosto de 2015 en la región de Valparaíso, Chile Central. Latin American Journal of Aquatic Research, 45(2) (in press).Google Scholar
  30. Yamazaki, Y., & Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38(12), L12605. doi: 10.1029/2011GL047508

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Escuela de Ciencias del Mar, Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Millennium Nucleus for the Earthquake Cycle Along Subduction Zones (CYCLO)ValparaísoChile
  3. 3.Facultad de Ingeniería y Centro de Estudios AvanzadosUniversidad de Playa AnchaValparaísoChile
  4. 4.Escuela de Ingeniería Civil OceánicaUniversidad de ValparaísoValparaísoChile
  5. 5.School of Civil and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations