Pure and Applied Geophysics

, Volume 174, Issue 3, pp 1453–1470 | Cite as

On the Analysis of Wind-Induced Noise in Seismological Recordings

Approaches to Present Wind-Induced Noise as a Function of Wind Speed and Wind Direction
  • Friederike F. Lott
  • Joachim R. R. Ritter
  • Mahmoud Al-Qaryouti
  • Ulrich Corsmeier


Atmospheric processes, ranging from microscale turbulence to severe storms on the synoptic scale, impact the continuous ground motion of the earth and have the potential to induce strong broad-band noise in seismological recordings. We designed a target-oriented experiment to quantify the influence of wind on ground motion velocity in the Dead Sea valley. For the period from March 2014 to February 2015, a seismological array, consisting of 15 three-component short-period and broad-band stations, was operated near Madaba, Jordan, complemented by one meteorological tower providing synchronized, continuous three-component measurements of wind speed. Results reveal a pronounced, predominantly linear increase of the logarithmic power of ground motion velocity with rising mean horizontal wind speed at all recording stations. Measurements in rough, mountainous terrain further identify a strong dependency of wind-induced noise on surface characteristics, such as topography and, therefore, demonstrate the necessity to consider wind direction as well. To assess the noise level of seismological recordings with respect to a dynamically changing wind field, we develop a methodology to account for the dependency of power spectral density of ground motion velocity on wind speed and wind direction for long, statistically significant periods. We further introduce the quantitative measure of the ground motion susceptibility to estimate the vulnerability of seismological recordings to the presence of wind.


Seismology noise wind speed dead sea microseisms spectral analysis topography 



This study was part of the DESERVE project and as such funded by the Helmholtz Association (HGF). It was realized at the Institute of Meteorology (IMK) in close collaboration and with major support of the Geophysical Institute (GPI) at the Karlsruhe Institute of Technology (KIT). We want to thank Prof. Dr. Kottmeier for making the project possible and Werner Scherer for his expertise and commitment in the field work. In Jordan, we collaborated with the Ministry of Energy and Mineral Resources (MEMR) who supported this project beyond all expectations. Seismometers and data loggers were provided by the Geophysical Instrument Pool (GIPP) at the GeoForschunsZentrum (GFZ) Potsdam for all array stations. Waveforms from recording station GHAJ were provided by the GEOFON datacenter at GFZ (Hanka and Kind 1994).


  1. Alpert, P., Cohen, A., Neumann, J., & Doron, E. (1982). A model simulation of the summer circulation from the eastern mediterranean past Lake Kinneret in the Jordan Valley. Monthly Weather Review, 110(8), 994–1006.CrossRefGoogle Scholar
  2. Alpert, P., Neeman, B., & Shay-El, Y. (1990). Intermonthly variability of cyclone tracks in the Mediterranean. Journal of Climate, 3(12), 1474–1478.CrossRefGoogle Scholar
  3. Alpert, P., Osetinsky, I., Ziv, B., & Shafir, H. (2004). Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. International Journal of Climatology, 24, 1001–1011. doi: 10.1002/joc.1036.CrossRefGoogle Scholar
  4. Argaín, J. L., Miranda, P. M., & Teixeira, M. A. (2009). Estimation of the friction velocity in stably stratified boundary-layer flows over hills. Boundary-Layer Meteorology, 130(1), 15–28.CrossRefGoogle Scholar
  5. Bitan, A. (1976). The influence of the special shape of the Dead Sea and its environment on the local wind system. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 24(4), 283–301.CrossRefGoogle Scholar
  6. Bormann, P. (1998). Conversion and comparability of data presentations on seismic background noise. Journal of Seismology, 2(1), 37–45.CrossRefGoogle Scholar
  7. Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005). Mid-ocean microseisms. Geochemistry Geophysics Geosystems, 6(4), 1–19. doi: 10.1029/2004GC000768.CrossRefGoogle Scholar
  8. Dahm, T., Tilmann, F., & Morgan, J. (2006). Seismic broadband ocean-bottom data and noise observed with free-fall stations: Experiences from long-term deployments in the North Atlantic and the Tyrrhenian Sea. Bulletin of the Seismological Society of America, 96(2), 647–664.CrossRefGoogle Scholar
  9. Essen, H. H., Krüger, F., Dahm, T., & Grevemeyer, I. (2003). On the generation of secondary microseisms observed in northern and central Europe. Journal of Geophysical Research: Solid Earth, 108(B10), ESE 15.CrossRefGoogle Scholar
  10. Friedrich, A., Krüger, F., & Klinge, K. (1998). Ocean-generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2(1), 47–64.CrossRefGoogle Scholar
  11. Gerstoft, P., Shearer, P. M., Harmon, N., & Zhang, J. (2008). Global P, PP, and PKP wave microseisms observed from distant storms. Geophysical Research Letters, 35(23), 1–6. doi: 10.1029/2008GL036111.CrossRefGoogle Scholar
  12. Girdler, R. (1990). The Dead Sea transform fault system. Tectonophysics, 180(1), 1–13.CrossRefGoogle Scholar
  13. Groos, J. C., & Ritter, J. R. R. (2009). Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International, 179(2), 1213–1231. doi: 10.1111/j.1365-246X.2009.04343.x. URL:
  14. Hanjali, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609–638. doi: 10.1017/S002211207200268X.CrossRefGoogle Scholar
  15. Hanka, W., & Kind, R. (1994). The geofon program. Annals of Geophysics, 37(5), 1060–1065.Google Scholar
  16. Holub, K., Rušajová, J., & Sandev, M. (2008). The January 2007 windstorm and its impact on microseisms observed in the Czech Republic. Meteorologische Zeitschrift, 17(1), 47–53.Google Scholar
  17. Holub, K., Rušajová, J., & Sandev, M. (2009). A comparison of the features of windstorms Kyrill and Emma based on seismological and meteorological observations. Meteorologische Zeitschrift, 18(6), 607–614.CrossRefGoogle Scholar
  18. Kafle, H. K., & Bruins, H. J. (2009). Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Climatic Change, 96(1–2), 63–77.CrossRefGoogle Scholar
  19. Kottmeier, C., Agnon, A., Al-Halbouni, D., Alpert, P., Corsmeier, U., Dahm, T., et al. (2016). New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project. Science of the Total Environment, 544, 1045–1058.CrossRefGoogle Scholar
  20. Krumgalz, B. S., Hecht, A., Starinsky, A., & Katz, A. (2000). Thermodynamic constraints on Dead Sea evaporation: Can the Dead Sea dry up? Chemical Geology, 165(1), 1–11.CrossRefGoogle Scholar
  21. Lepore, S., Markowicz, K., & Grad, M. (2016). Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophysical Journal International, 205(3), 1406–1413.CrossRefGoogle Scholar
  22. Lott, F. (2016). Wind systems in the Dead Sea region and footprints in seismic records. Ph.D. thesis, Karlsruhe Institute of Technology. URL:
  23. Lott, F., Al-Qaryouti, M., Corsmeier, U., & Ritter, J. (2016). Dead Sea seismic array, Jordan for DESERVE project (Feb. 2014–Feb. 2015). Scientific Technical Report STR16/01, 16(01):1–11. doi: 10.2312/GFZ.b103-16011.
  24. McNamara, D., Hutt, C., Gee, L., Benz, H. M., & Buland, R. (2009). A method to establish seismic noise baselines for automated station assessment. Seismological Research Letters, 80(4), 628–637.CrossRefGoogle Scholar
  25. Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303–308. doi: 10.1111/j.1365-246X.2004.02561.x.CrossRefGoogle Scholar
  26. Naderyan, V., Hickey, C. J., Raspet, R. (2016). Wind-induced ground motion. Journal of Geophysical Research: Solid Earth, 121, 917–930.Google Scholar
  27. Orlanski, I. (1975). A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56, 527–530.Google Scholar
  28. Percival, D. B., & Walden, A. T. (1993). Spectral analysis for physical applications (1st ed.). Cambridge: Cambridge University Press. (xxvii, 583 pp).CrossRefGoogle Scholar
  29. Peterson, J. (1993). Observations and modeling of seismic background noise. Open file report 93-322.Google Scholar
  30. Pierson, W., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodski. Journal of Geophysical Research, 69(24), 51815190.Google Scholar
  31. Ritter, J., & Groos, J. (2007). Kyrills seismischer Fingerabdruck. Spektrum der Wissenschaft, 3, 19.Google Scholar
  32. Saccorotti, G., Piccinini, D., Cauchie, L., & Fiori, I. (2011). Seismic noise by wind farms: A case study from the Virgo Gravitational Wave Observatory, Italy. Bulletin of the Seismological Society of America, 101(2), 568–578.CrossRefGoogle Scholar
  33. Schulte-Pelkum, V., Earle, P. S., & Vernon, F. L. (2004). Strong directivity of ocean-generated seismic noise. Geochemistry Geophysics Geosystems, 5(3), 1–13.CrossRefGoogle Scholar
  34. Stammler, K., & Ceranna, L. (2016). Influence of wind turbines on seismic records of the Gräfenberg array. Seismological Research Letters, 87(5), 1075–1081. doi: 10.1785/0220160049.CrossRefGoogle Scholar
  35. Tanimoto, T., & Artru-Lambin, J. (2007). Interaction of solid earth, atmosphere, and ionosphere. Treatise on Geophysics, 4, 421–444.CrossRefGoogle Scholar
  36. Tsvieli, Y., & Zangvil, A. (2007). Synoptic climatological analysis of Red Sea Trough and non-Red Sea Trough rain situations over Israel. Advances in Geosciences, 12, 137–143.CrossRefGoogle Scholar
  37. Van der Hoven, I. (1957). Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Meteorology, 14(2), 160–164.CrossRefGoogle Scholar
  38. Wilcock, W. S., Webb, S. C., & Bjarnason, I. T. (1999). The effect of local wind on seismic noise near 1 Hz at the MELT site and in Iceland. Bulletin of the Seismological Society of America, 89(6), 1543–1557.Google Scholar
  39. Withers, M. M., Aster, R. C., Young, C. J., & Chael, E. P. (1996). High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bulletin of the Seismological Society of America, 86(5), 1507–1515.Google Scholar
  40. World Meteorological Organization (1970) The Beaufort scale of wind force. Reports on Marine Science Affairs (3).Google Scholar
  41. Zhang, J., Gerstoft, P., & Shearer, P. M. (2009). High-frequency P-wave seismic noise driven by ocean winds. Geophysical Research Letters, 36(9), 1–5. l09302.Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Friederike F. Lott
    • 1
  • Joachim R. R. Ritter
    • 2
  • Mahmoud Al-Qaryouti
    • 3
  • Ulrich Corsmeier
    • 1
  1. 1.Institute of Meteorology and Climate Research (IMK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Geophysical Institute (GPI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Ministry of Energy and Mineral Resources (MEMR)AmmanJordan

Personalised recommendations