Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 3, pp 1291–1301 | Cite as

A Stress Condition in Aquifer Rock for Detecting Anomalous Radon Decline Precursory to an Earthquake

  • T. Kuo
  • H. Kuochen
  • C. Ho
  • W. Chen
Article
  • 183 Downloads

Abstract

Recurrent groundwater radon anomalous declines were observed from well measurements in the Antung hot spring area (eastern Taiwan) prior to five of six earthquakes that occurred between 2003 and 2011 (M w range 5.0–6.8). The relationship between the detectability of radon anomalies and the first motions of P-waves was investigated. Based on the first motions of P-waves recorded near the investigated well, a precursory decrease in groundwater radon can be detected only when the first motion is compression. No precursory change in groundwater radon concentration was observed for the downward first motion of P-waves.

Keywords

Radon-222 Groundwater Earthquakes P waves Stress 

Notes

Acknowledgements

Supports by the Ministry of Science and Technology Taiwan (NSC, MOST), Central Geological Surveys, Industrial Technology Research Institute (L550001060, N550003318), Radiation Monitoring Center, and Institute Earth Sciences of Academia Sinica of Taiwan are appreciated. The authors are grateful to Mr. C. Lin of the Antung hot spring for his kind field assistance.

References

  1. Attanasio, A., & Maravalle, M. (2016). Some considerations between radon and earthquakes in the crater of L’Aquila. Natural Hazards, 81, 1971–1979. doi: 10.1007/s11069-016-2169-4.CrossRefGoogle Scholar
  2. Brace, W. F., Paulding, B. W., Jr., & Scholz, C. H. (1966). Dilatancy in the fracture of crystalline rocks. Journal Geophysical Research, 71, 3939–3953. doi: 10.1029/JZ071i016p03939.CrossRefGoogle Scholar
  3. Carminati, E., Doglioni, C., & Barbab, S. (2004). Reverse migration of seismicity on thrusts and normal faults. Earth Science Reviews, 65, 195–222. doi: 10.1016/S0012-8252(03)00083-7.CrossRefGoogle Scholar
  4. Chen, W. S., & Wang, Y. (1996). Geology of the Coastal Range, eastern Taiwan. Geology of Taiwan 7. Central Geological Survey, Taiwan.Google Scholar
  5. Doglionia, C., Barbab, S., Carminatia, E., & Riguzzib, F. (2011). Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, 184, 160–171. doi: 10.1016/j.pepi.2010.11.005.CrossRefGoogle Scholar
  6. Doglionia, C., Barbab, S., Carminatia, E., & Riguzzib, F. (2013). Fault on–off versus coseismic fluids reaction. GSF, 5, 767–780. doi: 10.1016/j.gsf.2013.08.004.Google Scholar
  7. Erees, F. S., Aytas, S., Sac, M. M., Yener, G., & Salk, M. (2007). Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiation Measurements, 42, 80–86. doi: 10.1016/j.radmeas.2006.06.003.CrossRefGoogle Scholar
  8. Hashemi, S. M., Negarestani, A., Namvaran, M., & Musavi Nasab, S. M. (2013). An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. Journal of Radioanalytical and Nuclear Chemistry, 295, 2249–2262. doi: 10.1007/s10967-012-2310-0.CrossRefGoogle Scholar
  9. Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal Geophysical Research, 86, 9397–9410. doi: 10.1029/JB086iB10p09397.CrossRefGoogle Scholar
  10. Hsu, T. L. (1962). Recent faulting in the Longitudinal Valley of eastern Taiwan. Geological Society of China, 1, 95–102.Google Scholar
  11. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., et al. (1995). Ground-water radon anomaly before the Kobe earthquake in Japan. Science, 269, 60–61. doi: 10.1126/science.269.5220.60.CrossRefGoogle Scholar
  12. Kuo, T. (2014). Correlating precursory declines in groundwater radon with earthquake magnitude. Ground Water, 52, 217–224. doi: 10.1111/gwat.12049.CrossRefGoogle Scholar
  13. Kuo, T., Fan, K., Kuochen, H., & Chen, W. (2006a). A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water, 44, 642–647. doi: 10.1111/j.1745-6584.2006.00219.x.Google Scholar
  14. Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H., & Lee, Y. (2006b). Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. Journal of Environmental Radioactivity, 88, 101–106. doi: 10.1016/j.jenvrad.2006.01.005.CrossRefGoogle Scholar
  15. Namvaran, M., & Negarestani, A. (2013). Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). Journal of Radioanalytical and Nuclear Chemistry, 298, 1–8. doi: 10.1007/s10967-013-2162-7.CrossRefGoogle Scholar
  16. Noguchi, M. (1964). New method of radon activity measurement with liquid scintillator. Radioisotopes, 13, 362–367. doi: 10.3769/radioisotopes.13.5_362.CrossRefGoogle Scholar
  17. Noguchi, M., & Wakita, H. (1977). A method for continuous measurement of radon in groundwater for earthquake prediction. Journal Geophysical Research, 82, 1353–1357. doi: 10.1029/JB082i008p01353.CrossRefGoogle Scholar
  18. Nur, A. (1972). Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bulletin of the Seismological Society of America, 62, 1217–1222.Google Scholar
  19. Papastefanou, C. (2002). An overview of instrumentantion for measuring radon in soil gas and groundwaters. Journal of Environmental Radioactivity, 63, 271–283. doi: 10.1016/S0265-931X(02)00034-6.CrossRefGoogle Scholar
  20. Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake prediction: a physical basis. Science, 181, 803–810. doi: 10.1126/science.181.4102.803.CrossRefGoogle Scholar
  21. Shapiro, M. H., Melvin, J. D., & Tombrello, T. A. (1980). Automated radon monitoring at a hard-rock site in the southern California transverse ranges. Journal Geophysical Research, 85, 3058–3064. doi: 10.1029/JB085iB06p03058.CrossRefGoogle Scholar
  22. Shearer, P. M. (2009). Introduction to seismology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  23. Tarakçı, M., Harmanşah, C., Saç, M. M., & İçhedef, M. (2014). Investigation of the relationships between seismic activities and radon level in western Turkey. Applied Radiation and Isotopes, 83, 12–17. doi: 10.1016/j.apradiso.2013.10.008.CrossRefGoogle Scholar
  24. Torgersen, T., Benoit, J., & Mackie, D. (1990). Controls on groundwater Rn-222 concentrations in fractured rock. Geophys. Res. Lett., 17, 845–848. doi: 10.1029/GL017i006p00845.CrossRefGoogle Scholar
  25. Tuccimei, P., Mollo, S., Soligo, M., Scarlato, P., & Castelluccio, M. (2015). Real-time setup to measure radon emission during rock deformation: implications for geochemical surveillance. Geoscientific Instrumentation, Methods and Data Systems, 4, 111–119. doi: 10.5194/gi-4-111-2015.CrossRefGoogle Scholar
  26. Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., & Asada, T. (1980). Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science, 207, 882–883. doi: 10.1126/science.207.4433.882.CrossRefGoogle Scholar
  27. Yalim, H. A., Sandıkcıoğlua, A., Ünala, R., & Orhunb, Ö. (2007). Measurements of radon concentrations in well waters near the Akşehir fault zone in Afyonkarahisar, Turkey. Radiation Measurements, 42, 505–508. doi: 10.1016/j.radmeas.2006.12.013.CrossRefGoogle Scholar
  28. Zmazek, B., Todorovski, L., Živčić, M., Džeroski, S., Vaupotiča, J., & Kobala, I. (2006). Radon in a thermal spring: identification of anomalies related to seismic activity. Applied Radiation and Isotopes, 64, 725–734. doi: 10.1016/j.apradiso.2005.12.016.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mineral and Petroleum EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of GeophysicsNational Central UniversityJhongliTaiwan
  3. 3.Central Weather BureauTaipeiTaiwan
  4. 4.Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations