Pure and Applied Geophysics

, Volume 174, Issue 3, pp 1181–1199 | Cite as

Source Mechanisms and Stress Fields of the 15–16 June 2013 Crete Earthquake Sequence Along Hellenic Subduction Zone

  • Ethem GörgünEmail author


15 June 2013 M w 6.1 off-shore southern Crete earthquake and its aftershock sequence along Hellenic Subduction Zone are examined. Centroid moment tensors (CMTs) for 40 earthquakes with moment magnitudes (M w) between 3.5 and 6.1 are determined by applying a waveform inversion method. The mainshock is shallow focus thrust event with a minor strike-slip component at a depth of 20 km. The seismic moment (M o) of the mainshock is estimated as 2.07 × 1018 Nm, and rupture duration of the mainshock is 4 s. The focal mechanisms of aftershocks are mainly thrust faulting with a strike-slip component. The geometry of the moment tensors (M w ≥ 3.5) reveals a thrust faulting regime with N–S trending direction of P axis in the entire activated region. According to high-resolution CMT solutions of the off-shore southern Crete earthquake sequence, one main cluster consisting of 40 events is revealed. The aftershock activity in the observation period between 15 June and 15 July 2013 extends from N to S and NW to SE directions. Seismic cross sections indicate a complex pattern of the hypocenter distribution with the activation of two segments. The subduction interface is clearly revealed with high-resolution hypocenter source relocation and moment tensor solution. The best-constrained focal depths indicate that the aftershock sequence is mainly confined in the upper plate (depth < 30 km) and is ranging from about 5–28 km depth. A stress tensor inversion of focal mechanism data is performed to obtain a more precise picture of the off-shore southern Crete stress field. The stress tensor inversion results indicate a predominant thrust stress regime with a NE–SW-oriented maximum horizontal compressive stress (S H). According to variance of the stress tensor inversion, to first order, the southern Crete region is characterized by a homogeneous interplate stress field. We also investigate the Coulomb stress change associated with the mainshock to evaluate any significant enhancement of stresses along southern Crete and surrounding regions. Positive lobes with stress more than 0.3 bars are obtained for the mainshock, indicating that these values are large enough to increase the Coulomb stress failure toward WNW–ESE direction.


Aftershock Coulomb stress analysis Crete earthquake focal mechanism moment tensor inversion stress tensor inversion 



Author thanks all members of the GeoForschungsZentrum Potsdam GEOFON for providing the continuous seismological data used in this study. The author is also grateful to Dr. Masaru Nakano for providing the waveform inversion code. I would like to thank Adrien Oth (Solid Earth Sciences Editor) and two anonymous reviewers for their constructive comments and suggestions which improved the manuscript. All figures are generated by Generic Mapping Tools (GMT) code developed by Wessel and Smith (1998).


  1. Becker, D., Meier, T., Bohnhoff, M., & Harjes, H.-P. (2010). Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network. Journal of Seismology, 14, 369–392.CrossRefGoogle Scholar
  2. Becker, D., Meier, T., Rische, M., Bohnhoff, M., & Harjes, H.-P. (2006). Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics, 423, 3–16.CrossRefGoogle Scholar
  3. Benetatos, C., Kiratzi, A., Papazachos, C., & Karakaisis, G. (2004). Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc. Journal of Geodynamics, 37(2), 253–296.CrossRefGoogle Scholar
  4. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027. doi: 10.1029/2001GC000252.CrossRefGoogle Scholar
  5. Bohnhoff, M., Grosser, H., & Dresen, G. (2006). Strain partitioning and stress rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit M w = 7.4 earthquake. Geophysical Journal International, 166, 373–385.CrossRefGoogle Scholar
  6. Bohnhoff, M., Makris, J., Stavrakakis, G., & Papanikolaou, D. (2001). Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics, 343, 239–262.CrossRefGoogle Scholar
  7. Bohnhoff, M., Meier, T., & Harjes, H.-P. (2005). Stress regime at the Hellenic Arc from focal mechanisms. Journal of Seismology, 9, 341–366.CrossRefGoogle Scholar
  8. Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96, 109–117.CrossRefGoogle Scholar
  9. Bouchon, M. (1979). Discrete wave number representation of elastic wave fields in three-space dimensions. Journal of Geophysical Research, 84, 3609–3614.CrossRefGoogle Scholar
  10. Chan, C.-H., & Stein, R. S. (2009). Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: Consequences for after slip, relaxation, aftershocks and departures from Omori decay. Geophysical Journal International, 177, 179–192.CrossRefGoogle Scholar
  11. Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D., et al. (1999). Microseismic activity and seismotectonics of the Heraklion area (central Crete Island, Greece). Tectonophysics, 308, 237–248.CrossRefGoogle Scholar
  12. Endrun, B., Meier, T., Bischoff, M., & Harjes, H.-P. (2004). Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophysical Journal International, 158, 592–608.CrossRefGoogle Scholar
  13. Engdahl, E. R., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88, 722–743.Google Scholar
  14. Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdevillee, Y., & Trampert, J. (2013a). The deep structure of the North Anatolian Fault Zone. Earth and Planetary Science Letters, 373, 109–117. doi: 10.1016/j.epsl.2013.04.027.CrossRefGoogle Scholar
  15. Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., et al. (2013b). Multi-scale full waveform inversion. Geophysical Journal International, 194(1), 534–556. doi: 10.1093/gji/ggt118.CrossRefGoogle Scholar
  16. Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89(B11), 9305–9320.CrossRefGoogle Scholar
  17. Gerya, T. V., & Stöckhert, B. (2006). 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Sciences, 95, 250–274.CrossRefGoogle Scholar
  18. Gerya, T. V., Stöckhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel—A numerical simulation. Tectonics, 21, 6-1–6-19.CrossRefGoogle Scholar
  19. Görgün, E., Bohnhoff, M., Bulut, F., & Dresen, G. (2010). Seismotectonic settings of the Karadere-Düzce branch of the North Anatolian Fault Zone between the 1999 Izmit and Düzce ruptures from analysis of Izmit aftershock focal mechanisms. Tectonophysics, 482, 170–181.CrossRefGoogle Scholar
  20. Hardebeck, J. L., & Hauksson, E. (2001). Stress orientations obtained from earthquake focal mechanisms: What are appropriate uncertainty estimates? Bulletin of the Seismological Society of America, 97, 826–842.CrossRefGoogle Scholar
  21. Hsu, Y.-J., Simons, M., Avouac, J. P., Galetzka, J., Sieh, K., Chlieh, M., et al. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, 312(5782), 1921–1926.CrossRefGoogle Scholar
  22. Huguen, C., Mascle, J., Chaumillon, E., Woodside, J. M., Benkhelil, J., Kopf, A., et al. (2001). Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics, 343, 21–47.CrossRefGoogle Scholar
  23. Jost, M., Knabenbauer, O., Cheng, J., & Harjes, H.-P. (2002). Fault plane solutions of microearthquakes and small events in the Hellenic Arc. Tectonophysics, 356, 87–114.CrossRefGoogle Scholar
  24. Kind, R., Eken, T., Tilmann, F., Sodoudi, F., Taymaz, T., Bulut F., et al. (2015). Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth, 6, 971–984. doi: 10.5194/se-6-971-2015.
  25. King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–953.Google Scholar
  26. Kiratzi, A., & Louvari, E. (2003). Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database. Journal of Geodynamics, 36(1–2), 251–274. Active Faults: Analysis, Processes and Monitoring.CrossRefGoogle Scholar
  27. Knapmeyer, M., & Harjes, H.-P. (2000). Imaging crustal discontinuities and the downgoing slab beneath western Crete. Geophysical Journal International, 143, 1–22.CrossRefGoogle Scholar
  28. Kreemer, C., & Chamot-Rooke, N. (2004). Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophysical Journal International, 157, 1377–1392.CrossRefGoogle Scholar
  29. Le Pichon, X., & Kreemer, C. (2010). The miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323–351.CrossRefGoogle Scholar
  30. Lin, J., & Stein, R. S. (2004). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303. doi: 10.1029/2003JB002607.CrossRefGoogle Scholar
  31. Lu, Z., Wyss, M., & Pulpan, H. (1997). Details of stress directions in the Alaska subduction zone from fault plane solutions. Journal of Geophysical Research, 102, 5385–5402.CrossRefGoogle Scholar
  32. Lund, B., & Slunga, R. (1999). Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Olfus in southwest Iceland. Journal of Geophysical Research, 104, 14.947–14.964.CrossRefGoogle Scholar
  33. McCloskey, J., Nalbant, S. S., Steacy, S., Nostro, C., Scotti, O., & Baumont, D. (2003). Structural constraints on the spatial distribution of aftershocks. Geophysical Research Letters, 30(12), 1610. doi: 10.1029/2003GL017225.CrossRefGoogle Scholar
  34. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., et al. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719.CrossRefGoogle Scholar
  35. McKenzie, D. (1978). Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions. Geophysical Journal International, 55, 217–254.CrossRefGoogle Scholar
  36. Meier, T., Rische, M., Endrun, B., Vafidis, A., & Harjes, H.-P. (2004). Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics, 383, 149–169.CrossRefGoogle Scholar
  37. Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research, 89, 11517–11526.CrossRefGoogle Scholar
  38. Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research, 92, 357–368.CrossRefGoogle Scholar
  39. Michael, A. J. (1991). Spatial variations of stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results. Journal of Geophysical Research, 96, 6303–6319.CrossRefGoogle Scholar
  40. Michael, A. J., Ellsworth, W. L., & Oppenheimer, D. (1990). Co-seismic stress changes induced by the 1989 Loma Prieta, California earthquake. Geophysical Research Letters, 17, 1441–1444.CrossRefGoogle Scholar
  41. Nakano, M., Kumagai, H., & Inoue, H. (2008). Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function. Geophysical Journal International, 173, 1000–1011.CrossRefGoogle Scholar
  42. Nakano, M., Yamashina, T., Kumagai, H., Inoue, H., & Sunarjo, (2010). Centroid moment tensor catalogue for Indonesia. Physics of the Earth and Planetary Interiors, 183, 456–467.CrossRefGoogle Scholar
  43. Nyst, M., & Thatcher, W. (2004). New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research, 109, B11406. doi: 10.1029/2003JB002830.CrossRefGoogle Scholar
  44. Papazachos, B. C. (1996). Large seismic faults in the Hellenic arc. Annali di Geofisica, 39, 891–903.Google Scholar
  45. Papazachos, B. C., Karakostas, V. G., Papazachos, C. B., & Scordilis, E. M. (2000). The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic Arc. Tectonophysics, 319, 275–300.CrossRefGoogle Scholar
  46. Reasenberg, P. A., & Simpson, R. W. (1992). Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255, 1687–1690. doi: 10.1126/science.255.5052.1687.CrossRefGoogle Scholar
  47. Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488, 22–30.CrossRefGoogle Scholar
  48. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411. doi: 10.1029/2005JB004051.CrossRefGoogle Scholar
  49. Roumelioti, Z., Kiratzi, A., & Benetatos, C. (2011). Time-domain moment tensors for shallow (h ≤ 40 km) earthquakes in the broader Aegean Sea for the years 2006 and 2007: The database of the Aristotle University of Thessaloniki. Journal of Geodynamics, 51, 179–189.CrossRefGoogle Scholar
  50. Şaroğlu, F., Emre, Ö., & Kuşcu, İ. (1992). Active fault map of Turkey. General Directorate of Mineral Research and Exploration (MTA), Eskisehir Yolu, 06520, Ankara, Turkey.Google Scholar
  51. Şengör, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Society of Economic Paleontologists and Mineralogists. Special Publication, 37, 227–264.Google Scholar
  52. Shaw, B., & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181, 966–984.Google Scholar
  53. Sodoudi, F., Kind, R., Hatzfeld, D., Priestly, K., Hanka, W., Wylegalla, K., et al. (2006). Lithospheric structure of the Aegean obtained from P and S receiver functions. Journal of Geophysical Research, 111, B12307. doi: 10.1029/2005JB003932.CrossRefGoogle Scholar
  54. Taymaz, T., Jackson, J., & Westaway, R. (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International, 102, 695–731.CrossRefGoogle Scholar
  55. ten Veen, J. H., & Kleinspehn, K. L. (2003). Incipient continental collision and plate-boundary curvature: Late Pliocene—Holocene transtensional Hellenic forearc, Crete, Greece. Journal of the Geological Society, 160, 161–181.CrossRefGoogle Scholar
  56. Toda, S., Lin, J., Meghraoui, M., & Stein, R. S. (2008). 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35, L17305. doi: 10.1029/2008GL034903.CrossRefGoogle Scholar
  57. Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M = 9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38, L00G03. doi: 10.1029/2011GL047834.CrossRefGoogle Scholar
  58. Toda, S., Stein, R. S., Richards-Dinger, K., & Bozkurt, S. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research, 110, B05S16. doi: 10.1029/2004JB003415.CrossRefGoogle Scholar
  59. Vanacore, E. A., Taymaz, T., & Saygin, E. (2013). Moho structure of the Anatolian Plate from receiver function analysis. Geophysical Journal International, 193(1), 329–337. doi: 10.1093/gji/ggs107. +15 pages supporting online material.
  60. Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199, 69–77. doi: 10.1093/gji/ggu224.CrossRefGoogle Scholar
  61. Wallace, R. E. (1951). Geometry of shearing stress and relationship to faulting. Journal of Geology, 59, 118–130.CrossRefGoogle Scholar
  62. Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tools released. EOS Transactions American Geophysical Union, 79, 579.CrossRefGoogle Scholar
  63. Wiemer, S., Gerstenberger, M. C., & Hauksson, E. (2002). Properties of the 1999, M w 7.1, Hector Mine earthquake: Implications for aftershock hazard. Bulletin of the Seismological Society of America, 92, 1227–1240.CrossRefGoogle Scholar
  64. Yolsal-Çevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic Subduction Zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536–537, 61–100. doi: 10.1016/j.tecto.2012.02.019.CrossRefGoogle Scholar
  65. Zang, A., & Stephansson, O. (2010). Stress field of the Earth’s crust. Dordrecht: Springer.CrossRefGoogle Scholar
  66. Zoback, M. L. (1992). First and second order patterns of stress in the lithosphere: The world stress map project. Journal of Geophysical Research, 97, 11703–11728.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Geophysical EngineeringIstanbul UniversityAvcılar, IstanbulTurkey

Personalised recommendations