Pure and Applied Geophysics

, Volume 174, Issue 3, pp 793–833 | Cite as

Quantitative Analysis of Seismicity in Iran

  • Mohammad Raeesi
  • Zoya Zarifi
  • Faramarz Nilfouroushan
  • Samar Amini Boroujeni
  • Kristy Tiampo
Article

Abstract

We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude–frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.

Keywords

Geodetic strain rate seismic strain rate stress drop Gutenberg-Richter parameters major historical and recent seismicity in the Iranian Plateau 

References

  1. Adeli, H. (1982). The Sirch (Kerman, Iran) Earthquake of 28 July 1981—A field investigation. Bulletin of the Seismological Society of America, 72, 841–861.Google Scholar
  2. Ahmadi, G., Mostaghel, N., & Nowroozi, A. A. (1989). Probabilistic seismic risk for various peak ground accelerations. Iranian Journal of Science and Technology, 13, 115–156.Google Scholar
  3. Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114(B1), B01310.CrossRefGoogle Scholar
  4. Allmendinger, R. W., Reilinger, R., & Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano, Tectonics, 26, TC3013. doi: 10.1029/2006TC002.030.
  5. Altamimi, Z., Métivier, L., & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research. doi: 10.1029/2011JB008930.
  6. Ambraseys, N., & Melville, C. (1982). A History of Persian Earthquakes, 219 pp., Cambridge University Press, Cambridge.Google Scholar
  7. Ambraseys, N. N. (1977). The Seismicity of Kuhistan. Iran, The Geographical Journal, 143. doi: 10.2307/1795,872.
  8. Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 July 1895. Journal of Earthquake Engineering, 01(02), 293–317. doi: 10.1142/S1363246997000131.Google Scholar
  9. Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research, 108(B1).Google Scholar
  10. Amorése, D. (2007). Applying a change-point detection method on frequency-magnitude distributions. Bulletin of the Seismological Society of America, 97(5), 1742–1749. doi: 10.1785/0120060181.CrossRefGoogle Scholar
  11. Authemayou, C., Bellier, O., Chardon, D., Benedetti, L., Malekzade, Z., Claude, C., et al. (2009). Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophysical Journal International, 178(1), 524–540. doi: 10.1111/j.1365-246X.2009.04191.x.CrossRefGoogle Scholar
  12. Bahroudi, A., & Koyi, H. (2003). Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach. Journal of the Geological Society, 160(5), 719–733.CrossRefGoogle Scholar
  13. Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(15), 15635–15637.CrossRefGoogle Scholar
  14. Berberian, M. (1976). Contribution to the Seismotectonics of Iran, Part II, Report 39, Tech. rep., Geol. Surv. Iran.Google Scholar
  15. Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3), 193–224.CrossRefGoogle Scholar
  16. Berberian, M., & King, G. C. P. (1981). Towards a plaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.CrossRefGoogle Scholar
  17. Berberian, M., & Walker, R. (2010). seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ’High-Alborz’, Iran. Geophysical Journal International, 182(3), 1577–1602. doi: 10.1111/j.1365-246X.2010.04705.x.CrossRefGoogle Scholar
  18. Berberian, M., Asudeh, I., & Arshadi, S. (1979). Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19 December 1977. Earth and Planetary Science Letters, 42(3), 456–462. doi: 10.1016/0012-821X(79)90055-4.CrossRefGoogle Scholar
  19. Berberian, M., Qorashi, M., Jackson, J., Priestley, K., & Wallace, T. (1992). The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726–1755.Google Scholar
  20. Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering. doi: 10.1007/s10518-009-9147-0.
  21. Brown, L., Wang, K., & Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value, Geophysical Research Letters, 42(24), 10595–10600. doi: 10.1002/2015GL066361.CrossRefGoogle Scholar
  22. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.CrossRefGoogle Scholar
  23. Cardozo, N., & Allemindigner, R. W. (2009). SSPX: A program to compute strain from displacement/velocity data. Computational GeoSciences, 35, 1343–1357.CrossRefGoogle Scholar
  24. Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J.-F., Hinderer, J., et al. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183(3), 1287–1301.CrossRefGoogle Scholar
  25. Dogan, B., & Karakas, A. (2013). Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 Mw 7.1 Van earthquake (East Anatolian Region, Turkey). Journal of Structural Geology, 46, 99–114. doi: 10.1016/j.jsg.2012.10.001.CrossRefGoogle Scholar
  26. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.CrossRefGoogle Scholar
  27. Ekströem, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. doi: 10.1016/j.pepi.2012.04.002.CrossRefGoogle Scholar
  28. Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. doi: 10.1111/j.1365-246X.2006.03127.x.CrossRefGoogle Scholar
  29. Falcon, N. L. (1974). Southern Iran: Zagros mountains, in Mesozoic-Cenozoic Orogenic Belts. Gological Society of London Special Publication, 4, 199–211.CrossRefGoogle Scholar
  30. Frohlich, C. (2006). Deep Earthquakes. Cambridge, United Kingdom, Cambridge University Press, p. 592.Google Scholar
  31. Gao, L., & Wallace, T. C. (1995). The 1990 Rudbar-Tarom Iranian earthquake sequence: Evidence for slip partitioning. Journal of Geophysical Research, 100(B8), 15317–15332.CrossRefGoogle Scholar
  32. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.Google Scholar
  33. Guest, B., Axen, G. J., Lam, P. S., & Hassanzadeh, J. (2006). Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere, 2(1), 35–52.CrossRefGoogle Scholar
  34. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.Google Scholar
  35. Hassani, B., Zafarani, H., Farjoodi, J., & Ansari, A. (2011). Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran. Soil Dynamics and Earthquake Engineering, 31(10), 1397–1413.CrossRefGoogle Scholar
  36. Heimpel, M. (1997). Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388(6645), 865–868.CrossRefGoogle Scholar
  37. Herring, T. A., King, R. W., & McCulsky, S. C. (2010). GLOBK reference manual, global Kalman filter VLBI and GPS analysis program, Release 10.4, Department of Earth, Atmospheric, and Planetary Sciences, MIT.Google Scholar
  38. Hollingsworth, J., Nazari, H., Ritz, J.-F., Salamati, R., Talebian, M., & Bahroudi, A., et al. (2010). Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. Journal of Geophysical Research. doi: 10.1029/2009JB007185, b12313.
  39. Hu, F., Zhang, Z., & Chen, X. (2016). Investigation of earthquake jump distance for strike-slip step overs based on 3D dynamic rupture simulations in an elastic half-space, Journal of Geophysical Research, 121(2), 994–1006. doi: 10.1002/2015JB012696.
  40. Jackson, J., Haines, J., & Holt, W. (1995). The accomodation of Arabia-Eurasia plate convergence in Iran. Journal of Geophysical Research, 100, 15205–15219. doi: 10.1029/95JB01,294.CrossRefGoogle Scholar
  41. Kamer, Y., & Hiemer, S. (2015). Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research, 120(7), 5191–5214.Google Scholar
  42. Kanamori, H., & Allen, C. R. (2013). Earthquake Repeat Time and Average Stress Drop. American Geophysical Union, pp. 227–235. doi: 10.1029/GM037p0227.
  43. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.Google Scholar
  44. Khodaverdian, A., Zafarani, H., & Rahimian, M. (2015). Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau. Tectonics, 34(10), 2190–2220.CrossRefGoogle Scholar
  45. Knopoff, L., & Gardner, J. K. (1972). Higher seismic activity during local night on the raw worldwide earthquake catalogue. Geophysical Journal of the Royal Astronomical Society, 28(3), 311–313.CrossRefGoogle Scholar
  46. Kondorskaya, N., &  Shebalin, N. (2010). New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977, Tech. rep., NOAA, National Geophysical Data Center, Boulder, Colorado, USA.Google Scholar
  47. Kostrov, B. V., &  Das, S. (1988). Principles of Earthquakes Source Mechanics. Cambridge University Press, Cambridge, p .286.Google Scholar
  48. Lay, T., & Wallace, T. (1995). Modern Global Seismology. International Geophysics. California, United States, Elsevier Science, p 521.Google Scholar
  49. Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N., & Schmittbuhl, J. (2014). Fluid-induced earthquakes with variable stress drop. Journal of Geophysical Research, 119(12), 8900–8913. doi: 10.1002/2014JB011282.Google Scholar
  50. McGill, S. F., Spinler, J. C., McGill, J. D., Bennett, R. A., Floyd, M. A., Fryxell, J. E., et al. (2015). Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacific-North America plate boundary through the San Bernardino Mountains, California. Journal of Geophysical Research, 120(4), 2772–2793.Google Scholar
  51. Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research. 110(B3), B03403.CrossRefGoogle Scholar
  52. Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., et al. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217–226.CrossRefGoogle Scholar
  53. Mirzaei, N., Gao, M., & Chen, Y. (1997). Seismicity in major seismotectonic proviences of Iran. Earthquake Research in China, 11, 351–361.Google Scholar
  54. Mirzaei, N., Gao, M., & Chen, Y. (1999). Delineation of potential seismic sources for seismic zoning of Iran. Journal of Seismology, 3, 17–30.CrossRefGoogle Scholar
  55. Mousavi, Z., Walpersdorf, A., Walker, R., Tavakoli, F., Pathier, E., Nankali, H., et al. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region, Earth and Planet. Science Letters, 377, 287–298.Google Scholar
  56. Mullick, M., Riguzzi, F., & Mukhopadhyay, D. (2009). Estimates of motion and strain rates across active faults in the frontal part of eastern Himalayas in North Bengal from GPS measurements. Terra Nova, 21, 410–415.CrossRefGoogle Scholar
  57. Nakamura, T., Suzuki, S., Sadeghi, H., Fatemi Aghda, S. M., Matsushima, T., Ito, Y., Hosseini, S. K., Gandomi, A. J., & Maleki, M. (2005), Source fault structure of the 2003 Bam earthquake, southeastern Iran, inferred from the aftershock distribution and its relation to the heavily damaged area: Existence of the Arg-e-Bam fault proposed. Geophysical Research Letters. doi: 10.1029/2005GL022631.
  58. National Geophysical Data Center, NOAA (2016), National Geophysical Data Center / World Data Service (NGDC/WDS): Global Significant Earthquake Database. http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1. doi: 10.7289/V5TD9V7K, online; Accessed Jan 2016.
  59. Nazari, H., Ritz, J.-F., Salamati, R., Shafei, A., Ghassemi, A., Michelot, J.-L., et al. (2009). Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2), 1028–1041. doi: 10.1111/j.1365-246X.2009.04173.x.CrossRefGoogle Scholar
  60. Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., et al. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy, 77(7–8), 411–422.CrossRefGoogle Scholar
  61. Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research, 119(4), 3561–3583.Google Scholar
  62. Nowroozi, A. A., & Ahmadi, G. (1986). Analysis of earthquake risk in Iran based on seismotetonic proviences. Tectonophysics, 122, 89–114.CrossRefGoogle Scholar
  63. Nur, A., & Mavko, G. (1974). Postseismic viscoelastic rebound. Science, 183(4121), 204–206.CrossRefGoogle Scholar
  64. Okal, E. A., & Romanowicz, B. A. (1994). On the variation of b-values with earthquake size. Physics of the Earth and Planetary Interiors, 87(1–2), 55–76. doi: 10.1016/0031-9201(94)90021-3.CrossRefGoogle Scholar
  65. Ottemöller, L., Voss, P., & Havskov, J. (2013). SEISAN earthquake analysis software for Windows. Linux and MacOSX: Solaris.Google Scholar
  66. Riznichenko, Y. V. (1965). Seismic rock flow, in dynamics of the Earth’s crust. Moscow: Nauka.Google Scholar
  67. Savage, J., & Prescott, W. (1978). Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83(B7), 3369–3376.CrossRefGoogle Scholar
  68. Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. doi: 10.1002/2014GL062863.CrossRefGoogle Scholar
  69. Schorlemmer, D., & Wiemer, S. (2005). Earth science: Microseismicity data forecast rupture area. Nature, 434(7037), 1086–1086.CrossRefGoogle Scholar
  70. Shabanian, E., Bellier, O., Siame, L., Abbassi, M. R., Bourlés, D., & Braucher, R., et al. (2012). The Binalud Mountains: A key piece for the geodynamic puzzle of NE Iran. Tectonics, 31(6), doi: 10.1029/2012TC003183, tC6003.
  71. Sorbi, M. R., Nilfouroushan, F., & Zamani, A. (2012). Seismicity patterns associated with the September 10th, 2008 Qeshm earthquake, South Iran. International Journal of Earth Sciences, 101(8), 2215–2223.CrossRefGoogle Scholar
  72. Sugan, M., Kato, A., Miyake, H., Nakagawa, S., & Vuan, A. (2014). The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophysical Research Letters, 41(17), 6137–6144.CrossRefGoogle Scholar
  73. Talebian, M., Fielding, E. J., Funning, G. J., Ghorashi, M., Jackson, J., & Nazari, H., et al. (2004). The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault. Geophysical Research Letters. doi: 10.1029/2004GL020058.
  74. Tatar, M., & Hatzfeld, D. (2009). Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June. Geophysical Journal International, 176(2), 529–541.CrossRefGoogle Scholar
  75. Tavakoli, B., & Ghafory Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annals of Geophysics, 42, 1013–1021.Google Scholar
  76. Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H., Hatzfeld, D., Tatar, M., et al. (2008). Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters, 275(3–4), 342–347. doi: 10.1016/j.epsl.2008.08.030.CrossRefGoogle Scholar
  77. Unglert, K., Savage, M. K., Fournier, N., Ohkura, T., & Abe, Y. (2011). Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera, Kyushu. Journal of Geophysical Research, 116(B11). doi: 10.1029/2011JB008520.
  78. Vallée, M. (2013). Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nature Communications, 4, 2606.CrossRefGoogle Scholar
  79. Walters, R., Parsons, B., & Wright, T. (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. Journal of Geophysical Research, 119(6), 5215–5234.Google Scholar
  80. Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., et al. (2014). Present day kinematics and fault slip rates in eastern Iran derived from 11 years of GPS data. Journal of Geophysical Research, 119, 1359–1383.Google Scholar
  81. Wiemer, S., & Schorlemmer, D. (2007). ALM: An asperity-based likelihood model for California. Seismological Research Letters, 78(1), 134–140.CrossRefGoogle Scholar
  82. Wiemer, S., & Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45, 259–302.CrossRefGoogle Scholar
  83. Wyss, M., Liang, B., Tanigawa, W., & Wu, X. (1992). Comparison of orientations of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii. Journal of Geophysical Research, 97(B4), 4769–4790.CrossRefGoogle Scholar
  84. Wyss, M., Schorlemmer, D., & Wiemer, S. (2000). Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. Journal of Geophysical Research, 105(B4), 7829–7844.CrossRefGoogle Scholar
  85. Yamasaki, T., Wright, T. J., & Houseman, G. A. (2014). Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone. Journal of Geophysical Research, 119(4), 3678–3699.Google Scholar
  86. Zafarani, H., & Hassani, B. (2013). Site response and source spectra of S waves in the Zagros region, Iran. Journal of Seismology, 17(2), 645–666.CrossRefGoogle Scholar
  87. Zafarani, H., Hassani, B., & Ansari, A. (2012). Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dynamics and Earthquake Engineering, 42, 197–218.CrossRefGoogle Scholar
  88. Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of Iran: Insight from seismic and geodetic computations. Pure and Applied Geophysics, 171, 1219–1236. doi: 10.1007/s00024-013-0711-9.CrossRefGoogle Scholar
  89. Zielke, O., & Arrowsmith, J. (2008). Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution. Geophysical Research Letters, 35(24), L24301.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.BergenNorway
  2. 2.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  3. 3.Department of Industrial Development, IT and Land ManagementUniversity of GävleGävleSweden
  4. 4.LantmäterietGävleSweden
  5. 5.Department of Earth SciencesUppsala UniversityUppsalaSweden
  6. 6.CIRES and Department of Geological SciencesUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations