Pure and Applied Geophysics

, Volume 173, Issue 9, pp 3011–3030 | Cite as

A Case Study of the Mechanisms Modulating the Evolution of Valley Fog

  • C. Hang
  • D. F. Nadeau
  • I. Gultepe
  • S. W. Hoch
  • C. Román-Cascón
  • K. Pryor
  • H. J. S. Fernando
  • E. D. Creegan
  • L. S. Leo
  • Z. Silver
  • E. R. PardyjakEmail author


We present a valley fog case study in which radiation fog is modulated by topographic effects using data obtained from a field campaign conducted in Heber Valley, Utah from January 7–February 1, 2015, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. We use data collected on January 9, 2015 to gain insight into relationships between typical shallow radiation fog, turbulence, and gravity waves associated with the surrounding topography. A ≈ 10–30 m fog layer formed by radiative cooling was observed from 0720 to 0900 MST under cold air temperatures (≈−9 °C), near-saturated (relative humidity with respect to water ≈95 %), and calm wind (mostly <0.5 m s−1) conditions. Drainage flows were observed occasionally prior to fog formation, which modulated heat exchanges between air masses through the action of internal gravity waves and cold-air pool sloshing. The fog appeared to be triggered by cold-air advection from the south (≈200°) at 0700 MST. Quasi-periodic oscillations were observed before and during the fog event with a time period of about 15 min. These oscillations were detected in surface pressure, temperature, sensible heat flux, incoming longwave radiation, and turbulent kinetic energy measurements. We hypothesize that the quasi-periodic oscillations were caused by atmospheric gravity waves with a time period of about 10–20 min based on wavelet analysis. During the fog event, internal gravity waves led to about 1 °C fluctuations in air temperatures. After 0835 MST when net radiation became positive, fog started to dissipate due to the surface heating and heat absorption by the fog particles. Overall, this case study provides a concrete example of how fog evolution is modulated by very weak thermal circulations in mountainous terrain and illustrates the need for high density vertical and horizontal measurements to ensure that the highly spatially varying physics in complex terrain are sufficient for hypothesis testing.


Ice fog internal gravity wave mountain complex terrain radiation fog turbulence–wave interaction 



This research was funded by the Office of Naval Research Award #N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. We are grateful the John Pace and Dragan Zajic from the U.S. Army Dugway Proving grounds for their gracious help and instrument contributions to the project. The authors want to thank Stephan de Wekker for providing data from the automatic weather station. We would also like to thank Alexei Perelet, Derek Jensen, and Matt Jeglum for their help in the field. We are also extremely grateful to Grant Kohler and the Kohler family for the use of their farm during the experiment as well as all of the additional help that they regularly provided during the experiment. The authors are extremely grateful for all of the help during the field campaign, and the scientific insight provided by the MATERHORN team.


  1. Adedokun, J. A., & Holmgren, B. (1993). Acoustic sounder doppler measurement of the wind fields associated with a mountain stratus transformed into a valley fog: a case study. Atmospheric Environment. Part A. General Topics, 27, 1091–1098.CrossRefGoogle Scholar
  2. Ahrens, C.D. (2012). Meteorology today: an introduction to weather, climate, and the environment, 10th edn. (Cengage Learning).Google Scholar
  3. Argentini, S., Mastrantonio, G., & Lena, F. (1999). Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy. Boundary-Layer Meteorology, 93, 253–267.CrossRefGoogle Scholar
  4. Bergot, T., & Guedalia, D. (1994). Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Monthly Weather Review, 122, 1218–1230.CrossRefGoogle Scholar
  5. Bossche, M., & de Wekker, S.F.J. (2016). Spatiotemporal variability of surface meteorological variables during fog and no-fog events in the Heber Valley, UT; selected case studies from MATERHORN-fog. Pure and Applied Geophysics (in press).Google Scholar
  6. Choularton, T. W., Fullarton, G., Latham, J., Mill, C. S., Smith, M. H., & Stromberg, I. M. (1981). A field study of radiation fog in Meppen, West Germany. Quarterly Journal Royal Meteorological Society, 107, 381–394.CrossRefGoogle Scholar
  7. Cuxart, J., & Jiménez, M. A. (2012). Deep radiation fog in a wide closed valley: study by numerical modeling and remote sensing. Pure and Applied Geophysics, 169, 911–926.CrossRefGoogle Scholar
  8. Duynkerke, P. (1991). Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog. Quarterly Journal Royal Meteorological Society, 117, 1207–1224.CrossRefGoogle Scholar
  9. Duynkerke, P. (1999). Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorology, 90, 447–477.CrossRefGoogle Scholar
  10. Ellrod, G. P., & Gultepe, I. (2007). Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Pure and Applied Geophysics, 164, 1193–1205.CrossRefGoogle Scholar
  11. Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., de Wekker, S. F. J., Hoch, S. W., et al. (2015). The MATERHORN: unraveling the intricacies of mountain weather. Bulletin of the American Meteorological Society, 96, 1945–1968.CrossRefGoogle Scholar
  12. Finnigan, J. J. (1988). Kinetic energy transfer between internal gravity waves and turbulence. Journal of the Atmospheric Sciences, 45, 486–505.CrossRefGoogle Scholar
  13. Fitzjarrald, D., & Lala, G. (1989). Hudson valley fog environment. Journal of Applied Meteorology, 28, 1303–1328.CrossRefGoogle Scholar
  14. Gerber, H. (1981). Microstructure of a radiation fog. Journal of the Atmospheric Sciences, 38, 454–458.CrossRefGoogle Scholar
  15. Golding, B. W. (1993). A study of the influence of terrain on fog development. Monthly Weather Review, 121, 2529–2541.CrossRefGoogle Scholar
  16. Gultepe, I., Fernando, H.J.S., Pardyjak, E.R., Hoch, S.W., Silver, Z., Creegan, E., Leo, L.S., Pu, Z., de Wekker, S., & Hang, C. (2016). Mountain ice fog: observations and predictability. Pure and Applied Geophysics. doi: 10.1007/s00024-016-1374-0
  17. Gultepe, I., Hansen, B., Cober, S. G., Pearson, G., Milbrandt, J. A., Platnick, S., et al. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90, 341–359.CrossRefGoogle Scholar
  18. Gultepe, I., Isaac, G., Hudak, D., Nissen, R., & Strapp, J. W. (2000). Dynamical and microphysical characteristics of arctic clouds during BASE. Journal of Climate, 13, 1225–1254.CrossRefGoogle Scholar
  19. Gultepe, I., Isaac, G. A., Joe, P., Kucera, P., Theriault, J. M., & Fisico, T. (2012). Roundhouse (RND) mountain top research site: measurements and uncertainties for winter alpine weather conditions. Pure and Applied Geophysics, 171, 59–85.CrossRefGoogle Scholar
  20. Gultepe, I., Isaac, G. A., Williams, A., Marcotte, D., & Strawbridge, K. B. (2003). Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE. ACE: aircraft observations for April 1998. Atmosphere-Ocean, 41, 15–34.CrossRefGoogle Scholar
  21. Gultepe, I., Minnis, P., Milbrandt, J., Cober, S. G., Nguyen, L., Flynn, C., et al. (2008). The fog remote sensing and modeling (FRAM) field project: visibility analysis and remote sensing of fog. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, 7088(12), 708803.CrossRefGoogle Scholar
  22. Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: a review of past achievements and future perspectives. Pure and Applied Geophysics, 164, 1121–1159.CrossRefGoogle Scholar
  23. Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A. J., et al. (2014). A review on ice fog measurements and modeling. Atmospheric Research, 151, 2–19.CrossRefGoogle Scholar
  24. Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., et al. (2010). PARISFOG: shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91(6), 767–783.CrossRefGoogle Scholar
  25. Hodges, D., & Pu, Z. (2015). The climatology, frequency, and distribution of cold season fog events in Northern Utah. Pure and Applied Geophysics, 1–15. doi: 10.1007/s00024-015-1187-6.
  26. Holets, S., & Swanson, R. N. (1981). High-inversion fog episodes in Central California. Journal of Applied Meteorology, 20, 890–899.CrossRefGoogle Scholar
  27. Horel, J., Ptter, T., Dunn, L., Steenburgh, W. J., Eubank, M., Splitt, M., et al. (2002). Weather support for the 2002 winter olympic and paralympic games. Bulletin of the American Meteorological Society, 83(2), 227. (24).CrossRefGoogle Scholar
  28. Jensen, D.D., Nadeau, D.F., Hoch, S.W., & Pardyjak, E.R. (2015). Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorology, 1–21. doi: 10.1007/s10546-015-0067-z.
  29. Kurita, S., Okada, K., Naruse, H., Ueno, T., & Mikami, M. (1990). Structure of a fog in the dissipation stage over land. Atmospheric Environment. Part A. General Topics, 24, 1473–1486.CrossRefGoogle Scholar
  30. Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., et al. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94, 51–63.CrossRefGoogle Scholar
  31. Lee, T. (1987). Urban clear islands in California central valley fog. Monthly Weather Review, 115, 1794–1796.CrossRefGoogle Scholar
  32. Mahrt, L. (2013). Stably stratified atmospheric boundary layers. Annual Review of Fluid Mechanics, 46, 23–45.CrossRefGoogle Scholar
  33. Manoj, M. G., & Devara, P. C. S. (2011). Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station. Annales Geophysicae, 29, 455–465.CrossRefGoogle Scholar
  34. Mason, J. (1982). The physics of radiation fog. Meteorological Society of Japan, 60, 486–499.Google Scholar
  35. Meillier, Y. P., Frehlich, R. G., Jones, R. M., & Balsley, B. B. (2008). Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. Journal of the Atmospheric Sciences, 65, 1414–1427.CrossRefGoogle Scholar
  36. Monti, P., Fernando, H.J.S., Princevac, M., Chan, W.C., Kowalewski, T.A., Pardyjak, E.R. (2002), Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope, Journal Atmospheric Science. 59, 2513–2534CrossRefGoogle Scholar
  37. Müller, M. D., Schmutz, C., & Parlow, E. (2007). A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure and Applied Geophysics, 164, 1241–1264.CrossRefGoogle Scholar
  38. Nappo, C. J. (2002). An introduction to atmospheric gravity waves. London: Academic Press.Google Scholar
  39. National Oceanic and Atmospheric Administration (NOAA), (2005), Surface Weather Observations and Reports, (Federal Meteorological Handbook).Google Scholar
  40. Pilié, R. J., Mack, E. J., Kocmond, W. C., Rogers, C. W., & Eadie, W. J. (1975). The life cycle of valley fog. Part I: micrometeorological characteristics. Journal of Applied Meteorology, 14, 347–363.CrossRefGoogle Scholar
  41. Porch, W. M., Clements, W. E., & Coulter, R. L. (1991). Nighttime valley waves. Journal of Applied Meteorology, 30, 145–156.CrossRefGoogle Scholar
  42. Price, J., Porson, A., & Lock, A. (2015). An observational case study of persistent fog and comparison with an ensemble forecast model. Boundary-Layer Meteorology, 155, 301–327.CrossRefGoogle Scholar
  43. Price, J. D., Vosper, S., Brown, A., Ross, A., Clark, P., Davies, F., et al. (2011). COLPEX: field and numerical studies over a region of small hills. Bulletin of the American Meteorological Society, 92, 1636–1650.CrossRefGoogle Scholar
  44. Pu, Z., Chachere, C.N., Hoch, S.W., Pardyjak, E., & Gultepe, I. (2016). Numerical prediction of cold season fog events over complex terrain: the performance of the WRF model during MATERHORN-fog and early evaluation. Pure and Applied Geophysics. doi: 10.1007/s00024-016-1375-z.
  45. Rees, J., Staszewski, W., & Winkler, J. (2001). Case study of a wave event in the stable atmospheric boundary layer overlying an Antarctic ice shelf using the orthogonal wavelet transform. Dynamics of Atmospheres and Oceans, 34, 245–261.CrossRefGoogle Scholar
  46. Richiardone, R., Alessio, S., Canavero, F., Einaudi, F., & Longhetto, A. (1995). Experimental study of atmospheric gravity waves and visibility oscillations in a fog episode. II Nuovo Cimento C, 18, 647–662.CrossRefGoogle Scholar
  47. Roach, W. T. (1976). On some quasi-periodic oscillations observed during a field investigation of radiation fog. Quarterly Journal Royal Meteorological Society, 102, 355–359.CrossRefGoogle Scholar
  48. Rodhe, B. (1962). The effect of turbulence on fog formation. Tellus, 14, 49–86.CrossRefGoogle Scholar
  49. Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G. J., Pardyjak, E. R., et al. (2015a). Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study. Atmospheric Chemistry and Physics, 15, 9031–9047.CrossRefGoogle Scholar
  50. Román-Cascón, C., Yagüe, C., Sastre, M., Maqueda, G., Salamanca, F., & Viana, S. (2012). Observations and WRF simulations of fog events at the Spanish Northern Plateau. Advances in Science and Research, 8, 11–18.CrossRefGoogle Scholar
  51. Román-Cascón, C., Yagüe, C., Viana, S., Sastre, M., Maqueda, G., Lothon, M., et al. (2015b). Near-monochromatic ducted gravity waves associated with a convective system close to the Pyrenees. Quarterly Journal Royal Meteorological Society, 141, 1320–1332.CrossRefGoogle Scholar
  52. Steeneveld, G. J., Ronda, R. J., & Holtslag, A. A. M. (2014). The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary-Layer Meteorology, 154, 265–289.CrossRefGoogle Scholar
  53. Sun, J., Nappo, C. J., Mahrt, L., Belu, D., Stauffer, D. R., Pulido, M., et al. (2015). Review of wave-turbulence interactions in the stable atmospheric boundary layer. Reviews of Geophysics, 53, 956–993.CrossRefGoogle Scholar
  54. Terradellas, E., Ferreres, E., & Soler, M. R. (2008). Analysis of turbulence in fog episodes. Advances in Science and Research, 2, 31–34.CrossRefGoogle Scholar
  55. Thom, D. J. (1965). The geography of heber valley. Utah: University of Utah.Google Scholar
  56. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.CrossRefGoogle Scholar
  57. Udina, M., Soler, M. R., Viana, S., & Yagüe, C. (2013). Model simulation of gravity waves triggered by a density current. Quarterly Journal Royal Meteorological Society, 139, 701–714.CrossRefGoogle Scholar
  58. Uematsu, A., Hashiguchi, H., Yamamoto, M. K., Dhaka, S. K., & Fukao, S. (2007). Influence of gravity waves on fog structure revealed by a millimeter-wave scanning doppler radar. Journal Geophysical Research, 112, D07207.CrossRefGoogle Scholar
  59. Underwood, S. J., Ellrod, G. P., & Kuhnert, A. L. (2004). A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the goes nighttime fog product. Journal of Applied Meteorology, 43, 297–311.CrossRefGoogle Scholar
  60. Van Der Velde, I. R., Steeneveld, G. J., Wichers Schreur, B. G. J., & Holtslag, A. A. M. (2010). Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Monthly Weather Review, 138, 4237–4253.CrossRefGoogle Scholar
  61. Viana, S., Terradellas, E., & Yagüe, C. (2010). Analysis of gravity waves generated at the top of a drainage flow. Journal of the Atmospheric Sciences, 67, 3949–3966.CrossRefGoogle Scholar
  62. Viana, S., Yagüe, C., & Maqueda, G. (2009). Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign. Boundary-Layer Meteorology, 133, 165–188.CrossRefGoogle Scholar
  63. Welch, R. M., Ravichandran, M. G., & Cox, S. K. (1986). Prediction of quasi-periodic oscillations in radiation fogs. Part I: comparison of simple similarity approaches. Journal of the Atmospheric Sciences, 43, 633–651.CrossRefGoogle Scholar
  64. Whiteman, C. D., Zhong, S., Shaw, W. J., Hubbe, J. M., Bian, X., & Mittelstadt, J. (2001). Cold pools in the Columbia Basin. Weather and Forecasting, 16, 432–447.CrossRefGoogle Scholar
  65. Ye, X., Wu, B., & Zhang, H. (2014). The turbulent structure and transport in fog layers observed over the Tianjin area. Atmospheric Research, 153, 217–234.CrossRefGoogle Scholar
  66. Zhou, B., & Ferrier, B. S. (2008). Asymptotic analysis of equilibrium in radiation fog. Journal of Applied Meteorology and Climatology, 47, 1704–1722.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • C. Hang
    • 1
  • D. F. Nadeau
    • 2
  • I. Gultepe
    • 3
  • S. W. Hoch
    • 4
  • C. Román-Cascón
    • 5
  • K. Pryor
    • 6
  • H. J. S. Fernando
    • 7
    • 8
  • E. D. Creegan
    • 9
  • L. S. Leo
    • 7
  • Z. Silver
    • 7
  • E. R. Pardyjak
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Civil and Water EngineeringUniversité LavalQuebec CityCanada
  3. 3.Cloud Physics and Severe Weather Research SectionEnvironment CanadaTorontoCanada
  4. 4.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA
  5. 5.Departamento de Geofísica y MeteorologíaUniversidad Complutense de MadridMadridSpain
  6. 6.Center for Satellite Applications and Research, National Oceanic and Atmospheric AdministrationNational Environmental Satellite, Data, and Information ServiceCamp SpringsUSA
  7. 7.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA
  8. 8.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA
  9. 9.Battlefield Environment DivisionArmy Research LabWhite SandsUSA

Personalised recommendations