Pure and Applied Geophysics

, Volume 174, Issue 1, pp 11–45 | Cite as

Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015

  • Mohammad Reza Mansouri Daneshvar
  • Friedemann T. Freund
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015


In the present study, a number of atmospheric and some ionospheric anomalies are analyzed, which were recorded prior to the Mw 8.3 Illapel earthquake of September 16, 2015. This very large earthquake occurred in Central Chile, close to the coast, as the result of thrust faulting on the interface between the Nazca Plate and South American continent. Using remotely sensed data extracted from NASA/Giovanni, NOAA/NCEP, and NOAA/NGDC, atmospheric and ionospheric anomalies were observed that co-registered 35–40 and 25–30 days prior to the main shock, respectively. With reference to long-term time series over the epicentral area, significant atmospheric anomalies were recorded for cloud cover, geopotential height, precipitation rates, surface air pressure, omega, stream function, and wind vectors—all in the time window of August 5–10, 2015, 35–40 days prior to the main shock. Anomalous TEC maps were recorded for the same time period. Satellite images indicate the formation of an unusual cyclone, presumably triggered by air turbulences and abnormal atmospheric conditions over the epicentral area, including strong vertical winds. Data from the Jicamarca radio observatory in Peru, more than 2000 km to the North, reveal anomalous ionospheric variations on August 15–20, 2015 with respect to international reference ionosphere thickness parameters and the altitude of the F layer. The observed anomalies are consistent with processes that occur at the ground-to-air interface due to the stress activation of peroxy defects in the hypocentral volume. The flow of positive hole charge carriers to the Earth surface expected to have led to massive air ionization, generating at first primarily positive airborne ions, then negative air ions plus ozone. Understanding the sequence of processes inside the Earth’s crust and at the ground-to-air interface provides information not previously available about the causal and temporal linkages between the various pre-earthquake phenomena and the future seismic event.


Illapel earthquake Chile Atmospheric anomalies Ionospheric anomalies Satellite observations Remote sensing Earthquake precursors Peroxy defects Positive hole charge carriers 



We wish to acknowledge the NASA and NOAA online data centers for global transmission of reanalysis data. Friedemann T. Freund acknowledges support from the NASA ESI grant NNX12AL71G through the San Jose State University Foundation.


  1. Afraimovich, E. L., & Astafyeva, E. I. (2008). TEC anomalies—local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Earth Planets and Space, 60(9), 961–966.CrossRefGoogle Scholar
  2. Aleksandrov, N. L., Bazelyan, E. M., Carpenter, R. B., Drabkin, M. M., & Raizer, Y. P. (2001). The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps. Journal of Physics D Applied Physics, 34, 3256–3266.CrossRefGoogle Scholar
  3. Alvan, H. V., Mansor, S., Omar, H., & Azad, F. H. (2014). Precursory signals associated with the 2010 M8.8 Bio-Bio earthquake (Chile) and the 2010 M7.2 Baja California earthquake (Mexico). Arabian Journal of Geosciences, 7(11), 4889–4897.CrossRefGoogle Scholar
  4. Biemont, E., Fremat, Y., & Quinet, P. (1999). Ionization potentials of atoms and ions from lithium to tin (z = 5-50). Atomic Data and Nuclear Data Tables, 71, 117–146.CrossRefGoogle Scholar
  5. Blakeslee, R. J., Christian, H. J., & Vonnegut, B. (1989). Electrical measurements over thunderstorms. Journal of Geophysical Research, 95(D11), 135–113, 140.Google Scholar
  6. Blecki, J., Parrot, M., & Wronowski, R. (2011). Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations. Journal of Asian Earth Sciences, 41, 450–458.CrossRefGoogle Scholar
  7. Bleier, T., Dunson, C., Maniscalco, M., Bryant, N., Bambery, R., & Freund, F. T. (2009). Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. Natural Hazards and Earth Systems Sciences, 9, 585–603.CrossRefGoogle Scholar
  8. Chakraborty, M., Kumar, S., De Kumar, B., & Guha, A. (2015). Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. Journal of Earth System Science, 124(5), 1115–1126.CrossRefGoogle Scholar
  9. Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396.CrossRefGoogle Scholar
  10. Dobrovolsky, I. P., Zubkov, S. I., & Myachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044.CrossRefGoogle Scholar
  11. Freund, F. T. (2003). Rocks that crackle and sparkle and glow: strange pre–earthquake phenomena. Journal of Scientific Exploration, 17(1), 37–71.Google Scholar
  12. Freund, F. T. (2011). Pre-earthquake signals: underlying physical processes. Journal of Asian Earth Sciences, 41, 383–400.CrossRefGoogle Scholar
  13. Freund, F. T. (2013). Earthquake forewarning—a multidisciplinary challenge from the ground up to space. Acta Geophysica, 61(4), 775–807.CrossRefGoogle Scholar
  14. Freund, F.T. & Freund M.M. (2015a). Paradox of peroxy defects and positive holes in rocks part I: effect of temperature. Journal of Asian Earth Sciences, 114(2), 3730150383.Google Scholar
  15. Freund, F. T., & Freund, M. M. (2015b). From where did the water come that filled the earth’s oceans? a widely overlooked redox reaction. American Journal of Analytical Chemistry, 6, 342–349.CrossRefGoogle Scholar
  16. Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., et al. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar Terrestrial Physics, 71(17-18), 1824–1834.CrossRefGoogle Scholar
  17. Freund, F. T., Takeuchi, A., Lau, B. W. S., Al-Manaseer, A., Fu, C. C., Bryant, N. A., et al. (2007). Stimulated thermal IR emission from rocks: assessing a stress indicator. eEarth, 2, 1–10.CrossRefGoogle Scholar
  18. Galav, P., Sharma, S., & Pandey, R. (2011). Study of simultaneous penetration of electric fields and variation of total electron content in the day and night sectors during the geomagnetic storm of 23 May 2002. Journal of Geophysical Research Space Physics. doi: 10.1029/2011JA017002.Google Scholar
  19. Galvan, D. A., Komjathy, A., Hickey, M. P., & Mannucci, A. J. (2011). The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. Journal of Geophysical Research. doi: 10.1029/2010JA016204.Google Scholar
  20. Ganguly, N. D. (2016). Atmospheric changes observed during April 2015 Nepal earthquake. Journal of Atmospheric and Solar Terrestrial Physics, 140, 16–22.CrossRefGoogle Scholar
  21. Garcia, R., Crespon, F., Ducic, V., & Lognonné, P. (2005). Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophysical Journal International, 163, 1049–1064.CrossRefGoogle Scholar
  22. Guo, J., Li, W., Liu, X., Kong, Q., Zhao, C., & Guo, B. (2015). Temporal-Spatial Variation of Global GPSDerivedTotal Electron Content, 1999–2013. PLoS One, 10(7), e0133378.CrossRefGoogle Scholar
  23. Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., et al. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053–1060.CrossRefGoogle Scholar
  24. Hayakawa, M., Kasahara, T. E. Y., Hobara, Y., & Asai, S. (2012). The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes. Journal of Geophysical Researches, 117, A09304.CrossRefGoogle Scholar
  25. Hayakawa, M., Kasahara, Y., Nakamura, T., Hobara, Y., Rozhnoi, A., Solovieva, M., et al. (2011). Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. Journal of Atmospheric Electricity, 31(2), 129–140.CrossRefGoogle Scholar
  26. Hegai, V. V., Kim, V. P., & Liu, J. Y. (2006). The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake. Advances in Space Research, 37, 653–659.CrossRefGoogle Scholar
  27. Heraud, J. (2014). Pre-earthquake signals at the ground level. In F. Freund & S. Langhoff (Eds.), Universe of Scales: from nanotechnology to cosmology (pp. 133–157). Berlin: Springer.Google Scholar
  28. Hirooka, S., Hattori, K., Nishihashi, M., & Takeda, T. (2011). Neural network based tomographic approach to detect earthquake-related ionospheric anomalies. Natural Hazards and Earth System Sciences, 11, 2341–2353.CrossRefGoogle Scholar
  29. Ho, Y. Y., Jhuang, H. K., Su, Y. C., & Liu, J. Y. (2013a). Seismo-ionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M8.8 Chile earthquake. Advances in Space Research, 51(12), 2309–2315.CrossRefGoogle Scholar
  30. Ho, Y. Y., Liu, J. Y., Parrot, M., & Pinçon, J. L. (2013b). Temporal and spatial analyses on seismo-electric anomalies associated with the 27 February 2010 M = 8.8 Chile earthquake observed by DEMETER satellite. Natural Hazards and Earth System Sciences, 13(12), 3281–3289.CrossRefGoogle Scholar
  31. Hsu, S. C., Huang, Y. T., Huang, J. C., Tu, J. Y., Engling, G., Lin, C. Y., et al. (2010). Evaluating real-time air-quality data as earthquake indicator. Science of the Total Environment, 408(11), 2299–2304.CrossRefGoogle Scholar
  32. Jianyong, L., Jianyong, M., Xinzhao, Y., Rui, Z., Hongbo, S., & Yufei, H. (2015). Ionospheric total electron content disturbance associated with May 12, 2008. Wenchuan Earthquake. Geodesy and Geodynamics, 6(2), 126–134.CrossRefGoogle Scholar
  33. King, B. V., & Freund, F. T. (1984). Surface charges and subsurface space charge distribution in magnesium oxide containing dissolved traces of water. Physical Review B, 29, 5814–5824.CrossRefGoogle Scholar
  34. Klimenko, M. V., Klimenko, V. V., Zakharenkova, I. E., Pulinets, S. A., Zhao, B., & Tsidilina, M. N. (2011). Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Advances in Space Research, 48, 488–499.CrossRefGoogle Scholar
  35. Kumar, S., & Singh, A. K. (2011). GPS derived ionospheric TEC response to geomagnetic storm on 24 August 2005 at Indian low latitude stations. Advances in Space Research, 47, 710–717.CrossRefGoogle Scholar
  36. Liu, J. Y., Chen, Y. I., Chuo, Y. J., & Chen, C. S. (2006). A statistical investigation of pre-earthquake ionospheric anomaly. Journal of Geophysical Research Space Physics. doi: 10.1029/2005JA011333.Google Scholar
  37. Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., et al. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22, 1585–1593.CrossRefGoogle Scholar
  38. Lizunov, G., & Hayakawa, M. (2004). Atmospheric gravity waves and their role in the lithosphere-troposphere-ionosphere interaction. IEEJ Transactions on Fundamentals and Materials A, 124, 12.CrossRefGoogle Scholar
  39. Mansouri Daneshvar, Tavousi, T., & Khosravi, M. (2014). Synoptic detection of the short-term atmospheric precursors prior to a major earthquake in the Middle East, North Saravan M 7.8 earthquake, SE Iran. Air Quality and Atmosphere Health, 7(1), 29–39.CrossRefGoogle Scholar
  40. Mansouri Daneshvar, M. R., Tavousi, T., & Khosravi, M. (2015). Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes; a new climatic conceptual model. International Journal of Environmental Science and Technology, 12(5), 1705–1718.CrossRefGoogle Scholar
  41. Mukhtarov, P., Andonov, B., & Pancheva, D. (2013). Global empirical model of TEC response to geomagnetic activity. Journal of Geophysical Research Space Physics, 118, 1–20.CrossRefGoogle Scholar
  42. Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., & Taylor, P. (2007). Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1–4), 211–220.CrossRefGoogle Scholar
  43. Pedatella, N. M., Lei, J., Larson, K. M., & Forbes, J. M. (2009). Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: long-duration positive storm effect. Journal of Geophysical Research Space Physics. doi: 10.1029/2009JA014568.Google Scholar
  44. Piroddi, L., & Ranieri, G. (2012). Night thermal gradient: a new potential tool for earthquake precursors studies. An application to the seismic area of L’Aquila (Central Italy). Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 307–312.CrossRefGoogle Scholar
  45. Píša, D., Parrot, M., & Santolík, O. (2011). Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. Journal of Geophysical Research. doi: 10.1029/2011JA016611.Google Scholar
  46. Pulinets, S. A., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes (p. 316). Berlin: Springer.Google Scholar
  47. Pulinets, S. A., & Davidenko, K. (2014). Ionospheric precursors of earthquakes and global electric circuit. Advances in Space Research, 53(5), 70–723.CrossRefGoogle Scholar
  48. Pulinets, S. A., & Ouzounov, D. (2011). Lithosphere-atmosphere-ionosphere coupling (LAIC) model—an unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4–5), 371–382.CrossRefGoogle Scholar
  49. Pulinets, S. A., Ouzounov, D., Karelin, A., & Davidenko, D. (2014). Physical bases of the generation of short-term earthquake precursors: a complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system. Geomagnetism and Aeronomy, 55(4), 522–539.Google Scholar
  50. Pulinets, S. A., Romanov, A. A., Urlichich, Y. M., Romanov, A., Doda, L. N., & Ouzounov, D. (2009). The first results of the pilot project on complex diagnosing earthquake precursors on Sakhalin. Geomagnetism and Aeronomy, 49(1), 115–123.CrossRefGoogle Scholar
  51. Qin, K., Wu, L., Liu, S., De Santis, A., & Cianchini, G. (2012). Mechanisms and relationship to soil moisture of surface latent heat flux anomaly before Inland earthquakes. In Proceeding of geoscience and remote sensing symposium (IGARSS), IEEE.Google Scholar
  52. Rozhnoi, A., Solovieva, M., Molchanov, O. A., Biagi, P. F., & Hayakawa, M. (2007). Observation evidences of atmospheric Gravity Waves induced by seismic activity from analysis of subionospheric LF signal spectra. Natural Hazards and Earth System Science, 7, 625–628.CrossRefGoogle Scholar
  53. Rycroft, M. J., & Harrison, R. G. (2012). Electromagnetic atmosphere-plasma coupling: the global electric circuit. Space Science Reviews, 168(1–4), 363–384.CrossRefGoogle Scholar
  54. Rycroft, M. J., Harrison, R. G., Nicoll, K. A., & Mareev, E. A. (2008). An overview of Earth’s global electric circuit and atmospheric conductivity. Space Science Reviews, 137(1–4), 83–105.CrossRefGoogle Scholar
  55. Sapkota, B. K., & Varshneya, N. C. (1990). On the global atmospheric electrical circuit. Journal of Atmospheric and Solar Terrestrial Physics, 52(1), 1–20.CrossRefGoogle Scholar
  56. Schaer, S., Gurtner, W., & Feltens, J. (1998). IONEX: the IONosphere map exchange format version 1. In Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, Germany.Google Scholar
  57. Scoville, J., Sornette, J., & Freund, F. T. (2015). Paradox of peroxy defects and positive holes in rocks Part II: outflow of electric currents from stressed rocks. Journal of Asian Earth Sciences, 114(2), 338–351.CrossRefGoogle Scholar
  58. Silva, H. G., Bezzeghoud, M., Reis, A. H., Rosa, R. N., Tlemçani, M., Araújo, A. A., et al. (2011). Atmospheric electrical field decrease during the M = 4.1 Sousel earthquake (Portugal). Natural Hazards and Earth System Sciences, 11, 987–991.CrossRefGoogle Scholar
  59. Singh, A. K., Siingh, D., Singh, R. P., & Mishra, S. (2011). Electrodynamical coupling of earth’s atmosphere and ionosphere: an overview. International Journal of Geophysics, 971302, 971313.Google Scholar
  60. Sykes, L. R., Shaw, B. E., & Scholz, C. H. (1999). Rethinking earthquake prediction. Pure and Applied Geophysics, 155, 207–232.CrossRefGoogle Scholar
  61. Takagi, M., & Kanada, M. (1972). Global variation in the atmospheric electric field. Pure and Applied Geophysics, 100(1), 44–53.CrossRefGoogle Scholar
  62. Thomas, J. N., Holzworth, R. H., & McCarthy, M. P. (2009). In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil. Atmospheric Research, 91, 153–160.CrossRefGoogle Scholar
  63. Tyrtyshinikov, A. V. (1996). The variations of ozone content in the atmosphere above strong earthquake epicenters. Physics of the Solid Earth, 31(9), 789–794.Google Scholar
  64. United States Geological Survey (2015). Technical report of M8.3–48 km W of Illapel, Chile 2015-09-16 22:54:32 UTC. United States Geological Survey.Google Scholar
  65. Walia, V., Virk, H. S., & Bajwa, B. S. (2006). Radon precursory signals for some earthquakes of magnitude >5 occurred in N–W Himalaya: an overview. Pure and Applied Geophysics, 163(4), 711–721.CrossRefGoogle Scholar
  66. Yada, N., & Saito, Y. (2012). Precursor observed by movements of aero-ionization measurement prior to the pacific coast of Tohoku earthquake in 2011. In EMSEV 2012, edited, p 5, Gotemba, JapanGoogle Scholar
  67. Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., et al. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activit. Geophysical Research Letters, 41(2), 4201–4206.CrossRefGoogle Scholar
  68. Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J., & Shen, X. (2011). ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Advances in Space Research, 47(6), 991–1000.CrossRefGoogle Scholar
  69. Zlotnicki, J., Li, F., & Parrot, M. (2012). Ionospheric disturbances recorded by DEMETER satellite over active volcanoes: from August 2004 to December 2010. International Journal of Geophysics, 2013, 1–17. (ID 530865, 530817).Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Geography and Natural HazardsResearch Institute of Shakhes PajouhIsfahanIran
  2. 2.NASA Ames Research CenterMountain ViewUSA
  3. 3.Carl Sagan CenterSETI InstituteMountain ViewUSA
  4. 4.Department of PhysicsSan Jose State UniversitySan JoseUSA

Personalised recommendations