Pure and Applied Geophysics

, Volume 173, Issue 12, pp 3671–3692

Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment

  • Randall J. LeVeque
  • Knut Waagan
  • Frank I. González
  • Donsub Rim
  • Guang Lin
Article

Abstract

To perform probabilistic tsunami hazard assessment for subduction zone earthquakes, it is necessary to start with a catalog of possible future events along with the annual probability of occurrence, or a probability distribution of such events that can be easily sampled. For near-field events, the distribution of slip on the fault can have a significant effect on the resulting tsunami. We present an approach to defining a probability distribution based on subdividing the fault geometry into many subfaults and prescribing a desired covariance matrix relating slip on one subfault to slip on any other subfault. The eigenvalues and eigenvectors of this matrix are then used to define a Karhunen-Loève expansion for random slip patterns. This is similar to a spectral representation of random slip based on Fourier series but conforms to a general fault geometry. We show that only a few terms in this series are needed to represent the features of the slip distribution that are most important in tsunami generation, first with a simple one-dimensional example where slip varies only in the down-dip direction and then on a portion of the Cascadia Subduction Zone.

Keywords

Probabilistic tsunami hazard assessment seismic sources Karhunen-Loève expansion subduction zone earthquakes 

References

  1. Adams, L., LeVeque, R., & González, F. (2015). The pattern-method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76, 19–39.CrossRefGoogle Scholar
  2. Anderson, J. G. (2015). The composite source model for broadband simulations of strong ground motions. Seismological Research Letters, 86(1), 68–74. doi:10.1785/0220140098.CrossRefGoogle Scholar
  3. Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics, 51(4), 425–438. doi:10.1198/TECH.2009.08019.CrossRefGoogle Scholar
  4. Benner, P., Gugercin, S., & Willcox, K. (2015). A survey of model reduction methods for parametric systems. SIAM Review, 57, 483531.CrossRefGoogle Scholar
  5. Chock, G.Y.K. (2015). The ASCE 7 tsunami loads and effects design standard. In N. Ingraffea, M. Libby (Eds.), Structures congress 2015 (pp. 1446–1456). American Society of Civil Engineers. doi: 10.1061/9780784479117.124.
  6. Cliffe, K. A., Giles, M. B., Scheichl, R., & Teckentrup, A. L. (2011). Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Computing and Visualization in Science, 14(1), 3–15. doi:10.1007/s00791-011-0160-x.CrossRefGoogle Scholar
  7. Dettmer, J., Hawkins, R., Cummins, P. R., Hossen, J., Sambridge, M., & Hino, R., et al. (2016). Tsunami source uncertainty estimation: The 2011 Japan tsunami. Journal of Geophysical Research: Solid Earth. doi:10.1002/2015JB012764.
  8. Dick, J., Kuo, F. Y., & Sloan, I. H. (2013). High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica, 22, 133–288. doi:10.1017/S0962492913000044.CrossRefGoogle Scholar
  9. Dreger, D. S., Beroza, G. C., Day, S. M., Goulet, C. A., Jordan, T. H., Spudich, P. A., et al. (2015). Validation of the SCEC broadband platform V14.3 Simulation methods using pseudospectral acceleration data. Seismological Research Letters, 86(1), 39–47. doi:10.1785/0220140118.CrossRefGoogle Scholar
  10. Frankel, A. (1991). High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, B value, and the scaling of strength on faults. Journal of Geophysical Research, 96, 6291–6302.CrossRefGoogle Scholar
  11. Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research, 107(B5), 2086. doi:10.1029/2000JB000139.CrossRefGoogle Scholar
  12. Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37, 277–314.CrossRefGoogle Scholar
  13. Geist, E. L., Parsons, T., ten Brink, U. S., & Lee, H. J. (2009). In E. N. Bernard, A. R. Robinson (Eds.), The Sea (Vol. 15)., Tsunami probability. Harvard University Press.Google Scholar
  14. Ghanem, R. (1999). The Nonlinear Gaussian spectrum of log-normal stochastic processes and variables. Journal of Applied Mechanics, 66(4), 964–973. doi:10.1115/1.2791806.CrossRefGoogle Scholar
  15. Ghanem, R. G., & Spanos, P. D. (1991). Stochastic finite elements: A spectral approach. New York: Springer.CrossRefGoogle Scholar
  16. Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56, 607–617. doi:10.1287/opre.1070.0496.CrossRefGoogle Scholar
  17. Goda, K., Mai, P. M., Yasuda, T., & Mori, N. (2014). Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth, Planets and Space, 66(1), 1–20. doi:10.1186/1880-5981-66-105.CrossRefGoogle Scholar
  18. Goda, K., Li, S., Mori, N., & Yasuda, T. (2015). Probabilistic tsunami damage assessment considering stochastic source models: Application to the 2011 Tohoku earthquake. Coastal Engineering Journal, 57(03), 1550,015. doi:10.1142/S0578563415500151.CrossRefGoogle Scholar
  19. González, F. I., LeVeque, R. J., Adams, L. M., Goldfinger, C., Priest, G. R., & Wang, K. (2014). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA.Google Scholar
  20. González, F. I., Geist, E. L., Jaffe, B., Knolu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources. Journal of Geophysical Research, 114(C11), 023.CrossRefGoogle Scholar
  21. Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A):2095–2123. doi:10.1785/0120100057. http://www.bssaonline.org/cgi/doi/10.1785/0120100057
  22. Guatteri, M., Mai, P. M., Beroza, G. C., & Boatwright, J. (2003). Strong ground-motion prediction from stochastic-dynamic source models. Bulletin of the Seismological Society of America, 93(1), 301–313. doi:10.1785/0120020006.CrossRefGoogle Scholar
  23. Huang, S. P., Quek, S. T., & Phoon, K. K. (2001). Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 52(9), 1029–1043.CrossRefGoogle Scholar
  24. Jaimes, M. A., Reinoso, E., Ordaz, M., Huerta, B., Silva, R., Mendoza, E., et al. (2016). A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean and Coastal Management, 119, 68–75. doi:10.1016/j.ocecoaman.2015.10.007.CrossRefGoogle Scholar
  25. Karhunen, K. (1947). Über lineare Methoden in der Wahrscheinlichkeitsrechnung (vol 37). Universitat HelsinkiGoogle Scholar
  26. Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165(2), 622–640. doi:10.1111/j.1365-246X.2006.02943.x.CrossRefGoogle Scholar
  27. LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Code to accompany this paper. https://github.com/rjleveque/KLslip-paper. doi:10.5281/zenodo.59720.
  28. Li, J., Li, J., & Xiu, D. (2011). An efficient surrogate-based method for computing rare failure probability. Journal of Computational Physics, 230, 8683–8697. doi:10.1016/j.jcp.2011.08.008.CrossRefGoogle Scholar
  29. Loève, M. (1977). Probability theory (4th ed.). Berlin: Springer-Verlag.Google Scholar
  30. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588. doi:10.1093/gji/ggu408.CrossRefGoogle Scholar
  31. Løvholt, F., Pedersen, G., Bazin, S., Kühn, D., Bredesen, R. E., & Harbitz, C. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research, 117(C3). doi:10.1029/2011JC007616.
  32. Mai, P. M., & Beroza, G.C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research, 107, ESE10–1–ESE10–21Google Scholar
  33. Melgar, D. (2016). MudPy software. http://www.github.com/dmelgarm/MudPy
  34. Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Baez, J. C., et al. (2016a). Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, 43(3), 2015GL067,100. doi:10.1002/2015GL067100.Google Scholar
  35. Melgar, D., LeVeque, R. J., Dreger, D. S, & Allen, R.M. (2016b). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia Subduction Zone. SubmittedGoogle Scholar
  36. Nobile, F., Tempone, R., & Webster, C. G. (2008). A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5), 2309–2345. doi:10.1137/060663660.CrossRefGoogle Scholar
  37. Nosov, M. A., Bolshakova, A.V., & Kolesov, S.V. (2014). Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events. Pure and Applied Geophysics, 171(12), 3515–3525. doi:10.1007/s00024-013-0730-6. http://link.springer.com/10.1007/s00024-013-0730-6
  38. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
  39. Olsson, A., & Sandberg, G. (2002). Latin hypercube sampling for stochastic finite element analysis. Journal of Engineering Mechanics, 128(1), 121–125. doi:10.1061/(ASCE)0733-9399(2002)128:1(121).CrossRefGoogle Scholar
  40. Peherstorfer, B., Cui, T., Marzouk, Y., & Willcox, K. (2016). Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300, 490–509. doi:10.1016/j.cma.2015.12.002.CrossRefGoogle Scholar
  41. Pollitz, F. F., McCrory, P.A., Wilson, D., Svarc, J., Puskas, C., & Smith, R.B. (2010). Viscoelastic-cycle model of interseismic deformation in the northwestern United States. Geophysical Journal International, 181, 665–696. http://doi.wiley.com/10.1111/j.1365-246X.2010.04546.x
  42. Razafindrakoto, H. N. T., Mai, P. M., Genton, M. G., Zhang, L., & Thingbaijam, K. K. S. (2015). Quantifying variability in earthquake rupture models using multidimensional scaling: Application to the 2011 Tohoku earthquake. Geophysical Journal International, 202(1), 17–40. doi:10.1093/gji/ggv088.CrossRefGoogle Scholar
  43. Sarri, A., Guillas, S., & Dias, F. (2012). Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification. Natural Hazards and Earth System Sciences, 12(6), 2003–2018. doi:10.5194/nhess-12-2003-2012.CrossRefGoogle Scholar
  44. Schwab, C., & Todor, R. A. (2006). Karhunen-Loève approximation of random fields by generalized fast multipole methods. Journal of Computational Physics, 217, 100–122.CrossRefGoogle Scholar
  45. Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562–563, 1–25. doi:10.1016/j.tecto.2012.06.047.CrossRefGoogle Scholar
  46. Van Trees, H. L., Bell, K. L., & Tian, Z. (2013). Detection estimation and modulation theory, part I, detection, estimation, and filtering theory (2nd ed.). New Jersey: Wiley.Google Scholar
  47. Wang, K., & He, J. (2008). Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation. Bulletin of the Seismological Society of America, 98, 571–579. doi:10.1785/0120070097.CrossRefGoogle Scholar
  48. Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., et al. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803. doi:10.1130/GES00899.1.CrossRefGoogle Scholar
  49. Zhang, L., Mai, P. M., Thingbaijam, K. K., Razafindrakoto, H. N., & Genton, M. G. (2015). Analysing earthquake slip models with the spatial prediction comparison test. Geophysical Journal International, 200(1), 185–198. doi:10.1093/gji/ggu383.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Randall J. LeVeque
    • 1
  • Knut Waagan
    • 2
  • Frank I. González
    • 3
  • Donsub Rim
    • 1
  • Guang Lin
    • 4
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Forsvarets ForskningsinstituttOsloNorway
  3. 3.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  4. 4.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations