Pure and Applied Geophysics

, Volume 173, Issue 8, pp 2753–2766 | Cite as

The Triglav Glacier (South-Eastern Alps, Slovenia): Volume Estimation, Internal Characterization and 2000–2013 Temporal Evolution by Means of Ground Penetrating Radar Measurements

  • Costanza Del Gobbo
  • Renato R. Colucci
  • Emanuele ForteEmail author
  • Michaela Triglav Čekada
  • Matija Zorn


It is well known that small glaciers of mid latitudes and especially those located at low altitude respond suddenly to climate changes both on local and global scale. For this reason their monitoring as well as evaluation of their extension and volume is essential. We present a ground penetrating radar (GPR) dataset acquired on September 23 and 24, 2013 on the Triglav glacier to identify layers with different characteristics (snow, firn, ice, debris) within the glacier and to define the extension and volume of the actual ice. Computing integrated and interpolated 3D using the whole GPR dataset, we estimate that at the moment of data acquisition the ice area was 3800 m2 and the ice volume 7400 m3. Its average thickness was 1.95 m while its maximum thickness was slightly more than 5 m. Here we compare the results with a previous GPR survey acquired in 2000. A critical review of the historical data to find the general trend and to forecast a possible evolution is also presented. Between 2000 and 2013, we observed relevant changes in the internal distribution of the different units (snow, firn, ice) and the ice volume reduced from about 35,000 m3 to about 7400 m3. Such result can be achieved only using multiple GPR surveys, which allow not only to assess the volume occupied by a glacial body, but also to image its internal structure and the actual ice volume. In fact, by applying one of the widely used empirical volume-area relations to infer the geometrical parameters of the glacier, a relevant underestimation of ice-loss would be achieved.


3D GPR 4D analysis ice melting time monitoring, climate changes Triglav glacier Slovenia South-eastern Alps 



This research was funded by the “Finanziamento di Ateneo per progetti di ricerca scientifica—FRA 2012 and 2014” of the University of Trieste and by research Program No. P6-0101 of the Slovenian Research Agency. We gratefully acknowledge Halliburton and Schlumberger through the University of Trieste academic grants, respectively, for SeisSpace ProMax and Petrel interpretation packages. We also thank the editor in chief Carla Braitenberg, and four anonymous reviewers for their useful suggestions.


  1. Annan, A.P., & Cosway, S.W. (1994). GPR frequency selection. In Proceeding of the 5th International Conference on Ground Penetrating Radar, (GPR’94) 12–16 June, Kitchener, Ontario, Canada, pp. 747–760.Google Scholar
  2. Arcone, S. A. (1996). High resolution of glacial ice stratigraphy: A ground-penetrating radar study of Pegasus Runway, McMurdo Station, Antarctica. Geophysics, 61, 1653–1663.CrossRefGoogle Scholar
  3. Bahr, D. B., Meier, M. F., & Peckham, S. D. (1997). The theoretical basis of volume-area scaling. Journal of Geophysical Researches, 102(B9), 20355–20362.CrossRefGoogle Scholar
  4. Bahr, D. B., Pfeffer, W. T., & Kaser, G. (2015). A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1), 95–140.CrossRefGoogle Scholar
  5. Bahr, D. B., & Radić, V. (2012). Significant contribution to total mass from very small glaciers. The Cryosphere, 6, 763–770.CrossRefGoogle Scholar
  6. Chen, J., & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s, hydrology in mountainous regions, hydrological measurements, the water cycle. In Proceedings of two Lausanne Symposia, August 1990, International Association of Hydrological Sciences, 193, 127–135.Google Scholar
  7. Cogley, J.G., Hock, R., Rasmussen, L.A., Arendt, A.A., Bauder, A., Braithwaite, R.J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M. (2011). Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.Google Scholar
  8. Colucci R.R. (2016). Geomorphic influence on small glacier response to post Little Ice Age climate warming: Julian Alps, Europe. Earth Surface Processes and Landforms, 41(9), 1227–1240.CrossRefGoogle Scholar
  9. Colucci, R. R., Fontana, D., Forte, E., Potleca, M., & Guglielmin, M. (2016). Response of ice caves to weather extremes in the Southeastern Alps, Europe. Geomorphology, 261, 1–11.CrossRefGoogle Scholar
  10. Colucci, R. R., Forte, E., Boccali, C., Dossi, M., Lanza, L., Pipan, M., et al. (2015). Evaluation of internal structure, volume and mass balance of glacial bodies by integrated LiDAR and GPR surveys: the case study of Canin Eastern Glacieret (Julian Alps, Italy). Surveys in Geophysics, 36(2), 231–252.CrossRefGoogle Scholar
  11. Colucci, R. R., & Guglielmin, M. (2015). Precipitation–temperature changes and evolution of a small glacier in the southeastern European Alps during the last 90 years. International Journal of Climatology, 35(10), 2783–2797.CrossRefGoogle Scholar
  12. Forte, E., Dossi, M., Colucci, R. R., & Pipan, M. (2013). A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. Journal of Applied Geophysics, 99, 135–145.CrossRefGoogle Scholar
  13. Forte, E., Pipan, M., Francese, R., & Godio, A. (2015). An overview of GPR investigation in the Italian Alps. First Break, 33, 61–67.Google Scholar
  14. Gabrovec, M., Hrvatin, M., Komac, B., Ortar, J., Pavšek, M., Topole, M., Triglav Čekada, M., & Zorn, M. (2014). Tiglavski ledenik (Triglav Glacier). Geografija Slovenije 30. ZRC Publishing, Ljubljana (in Slovenian).Google Scholar
  15. Gabrovec, M., Ortar, J., Pavšek, M., Zorn, M., & Triglav Čekada, M. (2013). The Triglav Glacier between the years 1999 and 2012. Acta geographica Slovenica, 53(2), 257–293.CrossRefGoogle Scholar
  16. Gabrovec, M., & Zakšek, K. (2007). Krčenje Triglavskega ledenika v luči osončenosti. Dela, 28, 197–206. (in Slovenian with abstract in English).CrossRefGoogle Scholar
  17. Godio, A. (2009). Georadar measurements for the snow cover density. American Journal of Applied Sciences, 6(3), 414–423.CrossRefGoogle Scholar
  18. Godio, A., & Rege, R. B. (2016). Analysis of georadar data to estimate the snow depth distribution. Journal of Applied Geophysics, 129, 92–100.CrossRefGoogle Scholar
  19. Hausmann, H., & Behm, M. (2011). Imaging the structure of cave ice by ground penetrating radar. The Cryosphere, 5, 329–340.CrossRefGoogle Scholar
  20. Hrvatin, M., Komac, B., & Zorn, M. (2005). Geomorfološke značilnosti okolice Triglava (Geomorphological characteristics around Mount Triglav). Ljubljana: Geografski inštitut Antona Melika ZRC SAZU. (in Slovenian).Google Scholar
  21. Hughes, P. D. (2007). Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surface Processes Landforms, 32(10), 1593–1602.CrossRefGoogle Scholar
  22. Hughes, P. D. (2008). Response of a Montenegro glacier to extreme summer heat waves in 2003 and 2007. Geografiska Annaler, 90(4), 259–267.CrossRefGoogle Scholar
  23. Hughes, P. D. (2010). Little Ice Age glaciers in the Balkans: Low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surface Processes and Landforms, 35(2), 229–241.Google Scholar
  24. Hughes, P. D., & Woodward, J. C. (2009). Glacial and periglacial environments. In Woodward, J.C. (Ed.), The Physical Geography of the Mediterranean Basin (pp. 353–383). Oxford: Oxford University Press.Google Scholar
  25. Hughes, P. D., Woodward, J. C., & Gibbard, P. L. (2006). Quaternary glacial history of the Mediterranean mountains. Progress in Physical Geography, 30(3), 334–364.CrossRefGoogle Scholar
  26. Huss, M., Zemp, M., Joerg, P. C., & Salzmann, N. (2014). High uncertainty in 21st century runoff projections from glacierized basins. Journal of Hydrology, 510, 35–48.CrossRefGoogle Scholar
  27. Jol, H. M. (Ed.). (2009). Ground penetrating radar: Theory and applications. Amsterdam: Elsevier.Google Scholar
  28. Kuhn, M. (1995). The mass balance of very small glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie, 31(1–2), 171–179.Google Scholar
  29. Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31, 401–406.CrossRefGoogle Scholar
  30. Machguth, H., Eisen, O., Paul, F., & Hoelzle, M. (2006). Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent alpine glaciers. Geophysical Research Letters, 33(13), L13503.CrossRefGoogle Scholar
  31. Marazzi, S. (2005). Atlante Orografico delle Alpi. SOIUSA (Priuli & Verlucca) (in Italian).Google Scholar
  32. Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M., & The Randolph Consortium. (2014). The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.Google Scholar
  33. Planičar, M., Ogorelec, B., & Novak, M. (Eds.). (2009). The Geology of Slovenia. Ljubljana: Geološki zavod Slovenije.Google Scholar
  34. Previati, M., Godio, A., & Ferraris, S. (2011). Validation of spatial variability of snowpack thickness and density obtained with GPR and TDR methods. Journal of Applied Geophysics, 75, 284–293.CrossRefGoogle Scholar
  35. Saintenoy, A., Friedt, J. M., Booth, A. D., Tolle, F., Bernard, E., Laffly, D., et al. (2013). Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lovénbreen (Svalbard) using ground penetrating radar. Near Surface Geophysics, 11, 253–261.CrossRefGoogle Scholar
  36. Serrano, E., Gonzàlez-Trueba, J. J., Sanjosé, J. J., & Del Rìo, L. M. (2011). Ice patch origin, evolution and dynamics in a temperate high mountain environment: The Jou Negro, Picos de Europa (NW Spain). Geografiska Annaler, Series A, Physical Geography, 93, 57–70.CrossRefGoogle Scholar
  37. Šmuc, A., & Rožič, B. (2009). Tectonic geomorphology of the Triglav Lakes Valley (easternmost Southern Alps, NW Slovenia). Geomorphology, 103, 597–604.CrossRefGoogle Scholar
  38. Sold, L., Huss, M., Eichler, A., Schwikowski, M., & Hoelzle, M. (2015). Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier. The Cryosphere, 9, 1075–1087.CrossRefGoogle Scholar
  39. Tošić, I., Zorn, M., Ortar, J., Unkašević, M., Gavrilov, M. B., & Marković, S. B. (2016). Annual and seasonal variability of precipitation and temperatures in Slovenia from 1961 to 2011. Atmospheric Research, 168, 220–233.CrossRefGoogle Scholar
  40. Triglav Čekada, M., & Gabrovec, M. (2013). Documentation of Triglav glacier, Slovenia, using non-metric panoramic images. Annals of Glaciology, 54(62), 80–86.CrossRefGoogle Scholar
  41. Triglav Čekada, M., Zorn, M., & Colucci, R. R. (2014). Changes in the area of the Canin (Italy) and Triglav Glaciers (Slovenia) since 1893 based on archive images and aerial laser scanning. Geodetski vestnik, 58(2), 274–313.CrossRefGoogle Scholar
  42. Verbič, T., & Gabrovec, M. (2002). Georadarske meritve na Triglavskem ledeniku (The ground-penetrating-radar measurements of the Triglav Glacier). Geografski vestnik, 74(1), 25–42 (In Slovenian, with abstract in English).Google Scholar
  43. Žebre, M., & Stepišnik, U. (2015). Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surface Processes and Landforms, 40(11), 1493–1505.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Institute of Atmospheric and Cryospheric SciencesUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Earth System Sciences and Environmental TechnologiesISMAR-CNRTriesteItaly
  3. 3.Department of Mathematics and GeosciencesUniversity of TriesteTriesteItaly
  4. 4.Geodetic Institute of SloveniaLjubljanaSlovenia
  5. 5.Anton Melik Geographical InstituteResearch Centre of the Slovenian Academy of Sciences and ArtsLjubljanaSlovenia

Personalised recommendations