Pure and Applied Geophysics

, Volume 173, Issue 12, pp 3935–3953 | Cite as

Time–Frequency Characteristics of Tsunami Magnetic Signals from Four Pacific Ocean Events

  • N. R. Schnepf
  • C. Manoj
  • C. An
  • H. Sugioka
  • H. Toh
Article

Abstract

The recent deployment of highly sensitive seafloor magnetometers coinciding with the deep solar minimum has provided excellent opportunities for observing tsunami electromagnetic signals. These fluctuating signals (periods ranging from 10–20 min) are generally found to be within \(\pm\)\(\sim\)1 nT and coincide with the arrival of the tsunami waves. Previous studies focused on tsunami electromagnetic characteristics, as well as modeling the signal for individual events. This study instead aims to provide the time–frequency characteristics for a range of tsunami signals and a method to separate the data’s noise using additional data from a remote observatory. We focus on four Pacific Ocean events of varying tsunami signal amplitude: (1) the 2011 Tohoku, Japan event (M9.0), (2) the 2010 Chile event (M8.8), (3) the 2009 Samoa event (M8.0) and, (4) the 2007 Kuril Islands event (M8.1). We find possible tsunami signals in high-pass filtered data and successfully isolate the signals from noise using a cross-wavelet analysis. The cross-wavelet analysis reveals that the longer period signals precede the stronger, shorter period signals. Our results are very encouraging for using tsunami magnetic signals in warning systems.

Keywords

Tsunamis marine electromagnetics electromagnetic induction tsunami warning systems cross-wavelet analysis 

Notes

Acknowledgments

We thank Hisashi Utada (Earthquake Research Institute, University of Tokyo) and Noriko Tada (Japan Agency for Marine-Earth Science and Technology) for providing the data (T18) used in this study. The results presented in this paper rely on the data collected at Chichijima (CBI), Kakioka (KAK), Memambetsu (MMB) and Honolulu (HON). We thank the Japan Meteorological Agency for supporting the operation of CBI, KAK and MMB and the U.S. Geological Survey for supporting the operation of HON. We also thank INTERMAGNET for promoting high standards of magnetic observatory practice (http://www.intermagnet.org). The authors would like to thank CIRES innovative research project 2013 for funding. N.R.S. is grateful to the National Oceanic & Atmospheric Administrations Hollings Scholarship Program and the NSF Graduate Research Fellowship Program for supporting her through this research. N.R.S. would also like to thank Matt Pritchard, Rowena Lohman, Robert Tyler and Takuto Minami for useful discussions. Those interested in data from NWP should contact H. Toh (toh@kugi.kyoto-u.ac.jp). For data from the SOC stations, please contact H. Sugioka (hikari@jamstec.go.jp), and for data from T18, please contact H. Utada (utada@eri.u-tokyo.ac.jp).

References

  1. An, C. (2015). Inversion of tsunami waveforms and tsunami warning. PhD thesis, Cornell UniversityGoogle Scholar
  2. Baba, K., Utada, H., Goto, T. N., Kasaya, T., Shimizu, H., & Tada, N. (2010). Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Physics of the Earth and Planetary Interiors, 183(1–2), 44–62. doi:10.1016/j.pepi.2010.09.010. http://linkinghub.elsevier.com/retrieve/pii/S0031920110001949
  3. Chave, A. D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157, 988–1006. doi:10.1111/j.1365-246X.2004.02203.x.CrossRefGoogle Scholar
  4. Chave, A. D., Filloux, J. H., & Luther, D. S. (1989). Electromagnetic induction by ocean currents: BEMPEX. Physics of the Earth and Planetary Interiors, 53(3–4), 350–359. doi:10.1016/0031-9201(89)90021-6. http://linkinghub.elsevier.com/retrieve/pii/0031920189900216
  5. Cox, C. S., Filloux, J. H., & Larsen, J. C. (1971). Electromagnetic studies of ocean currents and electrical conductivity below the ocean-floor (pp. 637–693). In The sea Google Scholar
  6. Daubechies, I. (1992). Ten lectures on wavelets. In CBMSNSF regional conference series in applied mathematics (61st ed.). Philadelphia: SIAMGoogle Scholar
  7. Denig, W. F. (2015). Geomagnetic kp and ap indices. http://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html
  8. Fujii, Y., & Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 Great Kuril Earthquakes. Bulletin of the Seismological Society of America, 98(3), 1559–1571. doi:10.1785/0120070221. http://www.bssaonline.org/cgi/
  9. Fujii, Y., & Satake, K. (2009). Samoa Islands Tsunami on Sep. 29, 2009. http://iisee.kenken.go.jp/staff/fujii/Samoa/tsunami.html
  10. GEBCO (2013) The GEBCO_08 grid, version 20100927. Tech. rep., general bathymetric chart of the oceans. http://www.gebco.net
  11. González, F. I., & Kulikov, Y. A. (1993). Tsunami dispersion observed in the deep-ocean. In S. Tinti (Ed.), Tsunamis in the world (pp. 7–16). The Netherlands: Kluwer.CrossRefGoogle Scholar
  12. González, F. I., Satake, K., Boss, E. F., & Mofjeld, H. O. (1995). Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino Tsunami. Pageoph, 144, 18.CrossRefGoogle Scholar
  13. Grossmann, A., & Morlet, J. (1984). Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736.CrossRefGoogle Scholar
  14. Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration. Annals of Geophysics, 9(1), 15.Google Scholar
  15. Ichihara, H., Hamano, Y., Baba, K., & Kasaya, T. (2013). Tsunami source of the 2011 Tohoku earthquake detected by an ocean-bottom magnetometer. Earth and Planetary Science Letters, 382, 117–124. doi:10.1016/j.epsl.2013.09.015
  16. Klausner, V., Mendes, O., Domingues, M. O., Papa, A. R. R., Tyler, R. H., Frick, P., et al. (2014). Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010). Journal of Geophysical Research: Space Physics, 119(2010), 1–17. doi:10.1002/2013JA019398.Google Scholar
  17. Larsen, J. C. (1968). Electric and magnetic fields induced by deep sea tides. The Geophysical Journal of the Royal Astronomical Society, 16, 47–70.CrossRefGoogle Scholar
  18. Larsen, J. C. (1991). Transport measurements from in-service undersea telephone cables. IEEE Journal of Oceanic Engineering, 16(4), 313–318. doi:10.1109/48.90893. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=90893
  19. Larsen, J. C., & Sanford, T. B. (1985). Florida current volume transports from voltage measurements. Science, 227(4684), 302–304.CrossRefGoogle Scholar
  20. Liu, P. C. (2000). Wavelet transform and new perspective on coastal and ocean engineering data analysis. In Advances in coastal and ocean engineering (pp 57–99) Singapore: World Scientific Publishing CoGoogle Scholar
  21. Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  22. Malin, S. R. C. (1970). Separation of lunar daily geomagnetic variations into parts of ionospheric and oceanic origin. The Geophysical Journal of the Royal Astronomical Society, 21, 447–455.CrossRefGoogle Scholar
  23. Manoj, C., Maus, S., & Chulliat, A. (2011). Observation of magnetic fields generated by tsunamis. Eos, 92(2), 13–14. doi:10.1126/science.CrossRefGoogle Scholar
  24. Maus, S., & Kuvshinov, A. (2004). Ocean tidal signals in observatory and satellite magnetic measurements. Geophysical Research Letters, 31, L15313. doi:10.1029/2004GL020090. http://www.agu.org/pubs/crossref/2004/2004GL020090.shtml
  25. McKnight, J. D. (1995). Lunar daily geomagnetic variations in New Zealand. Geophysical Journal International, 122, 889–898.CrossRefGoogle Scholar
  26. Mendes, O., Domingues, M. O., Mendes da Costa, A., & Clua de Gonzalez, A. L. (2005). Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1827–1836. doi:10.1016/j.jastp.2005.07.004.CrossRefGoogle Scholar
  27. Minami, T., Toh, H., & Tyler, R. H. (2015). Properties of electromagnetic fields generated by tsunami first arrivals: Classification based on the ocean depth. 30, 1092 42:2171–2178. doi:10.1002/2015GL063055
  28. Mofjeld, H. O., González, F. I., & Newman, J. C. (1997). Short-term forecasts of inundation during teletsunamis in the eastern North Pacific Ocean. In G. Hebenstreit (Ed.), Perspectives on tsunami hazard reduction (pp. 145–155). Amsterdsam: Kluwer Acad.CrossRefGoogle Scholar
  29. Nagarajan, B., Suresh, I., Sundar, D., Sharma, R., Lal, A. K., Neetu, S., et al. (2006). The great tsunami of 26 December 2004: A description based on tide-gauge data from the Indian subcontinent and surrounding areas. Earth Planets Space, 58, 211–215.CrossRefGoogle Scholar
  30. Newland, D. E. (1993). Harmonic wavelet analysis. Proceedings of the Royal Society, 443(1917), 203–225. doi:10.1098/rspa.1993.0140. http://rspa.royalsocietypublishing.org/cgi/
  31. NOAA (2015) Global historical tsunami database. Tech. rep., National Geophysical Data Center / World Data System (NGDC/WDS), Boulder. http://www.ngdc.noaa.gov/hazard/tsu_db.shtml
  32. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  33. Rabinovich, A. B., & Thomson, R. E. (2007). The 26 December 2004 Sumatra Tsunami: Analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa. Pure and Applied Geophysics, 164(2–3), 261–308. doi:10.1007/s00024-006-0164-5. http://link.springer.com/
  34. Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. In Surveys in geophysics (vol. 27, pp. 647–677). doi:10.1007/s10712-006-9000-9. http://link.springer.com/10.1007/s10712-006-9000-9
  35. Sanford, T. B. (1971). Motionally induced electric and magnetic fields in the sea. Journal of Geophysical Research, 76(15). doi:10.1029/JC076i015p03476. http://www.agu.org/pubs/crossref/1971/JC076i015p03476.shtml
  36. Schnepf, N. R., Manoj, C., Kuvshinov, A., Toh, H., & Maus, S. (2014). Tidal signals in ocean bottom magnetic measurements of the Northwestern Pacific: Observation versus prediction. Geophysical Journal International, 198(2), 1096–1110.CrossRefGoogle Scholar
  37. Suetsugu, D., Shiobara, H., Sugioka, H., Ito, A., Isse, T., Kasaya, T., Tada, N., Baba, K., Abe, N., Hamano, Y., Tarits, P., Barriot, J. P., & Reymond, D. (2012). TIARES project—Tomographic investigation by seafloor array experiment for the Society hotspot. Earth, Planets and Space 64(4), i–iv. doi:10.5047/eps.2011.11.002
  38. Sugioka, H., Hamano, Y., Baba, K., Kasaya, T., Tada, N., & Suetsugu, D. (2014). Tsunami: Ocean dynamo generator. Nature Scientific reports 4. doi:10.1038/srep03596. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3884372&tool=pmcentrez&rendertype=abstract
  39. Tang, L., Titov, V. V., Wei, Y., Mofjeld, H. O., Spillane, M., Arcas, D., et al. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami. Journal of Geophysical Research, 113(C12), C12015. doi:10.1029/2008JC004922
  40. Tatehata, H., Ichihara, H., & Hamano, Y. (2015). Tsunami-induced magnetic fields detected at Chichijima Island before the arrival of the 2011 Tohoku earthquake tsunami. Earth, Planets and Space, 67(185). doi:10.1186/s40623-015-0347-3
  41. Thomson, D. J., Lanzerotti, L. J., Maclennan, C. G., & Medford, L. V. (1995). Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure and Applied Geophysics, 144(3–4), 427–440. doi:10.1007/BF00874376. http://www.springerlink.com/index/
  42. Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra Tsunami. Science, 309(5743), 2045–2048.CrossRefGoogle Scholar
  43. Toh, H., Hamano, Y., & Ichiki, M. (2006). Long-term seafloor geomagnetic station in the northwest Pacific : A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space, 58, 697–705.CrossRefGoogle Scholar
  44. Toh, H., Satake, K., Hamano, Y., Fujii, Y., & Goto, T. (2011). Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. Journal of Geophysical Research, 116(B2), B02104. doi:10.1029/2010JB007873. http://doi.wiley.com/
  45. Tyler, R. H. (2005). A simple formula for estimating the magnetic fields generated by tsunami flow. Geophysical Research Letters, 32(9), 1–4. doi:10.1029/2005GL022429. http://www.agu.org/pubs/crossref/2005/2005GL022429.shtml
  46. Tyler, R. H., Maus, S., & Lühr, H. (2003). Satellite observations of magnetic fields due to ocean tidal flow. Science, 299(5604), 239–241. doi:10.1126/science.1078074. http://www.ncbi.nlm.nih.gov/pubmed/12522247
  47. Utada, H., Shimizu, H., Ogawa, T., Maeda, T., Furumura, T., Yamamoto, T., et al. (2011). Geomagnetic field changes in response to the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami. Earth and Planetary Science Letters, 311(1–2), 11–27.CrossRefGoogle Scholar
  48. Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154.CrossRefGoogle Scholar
  49. Wang, X. M., & Liu, P. L. F. (2005). A numerical investigation of Boumerdes–Zemmouri (Algeria) earthquake and tsunami. CMES—Computer Modeling In Engineering & Sciences, 10(2), 171–183.Google Scholar
  50. Yue, H., Lay, T., Rivera, L., An, C., Vigny, C., & Tong, X. (2014). Localized fault slip to the trench in the 2010 Maule, Chile Mw=8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. Journal of Geophysical Research: Solid Earth, 119, 7786–7804. doi:10.1002/2014JB011340.Received.Google Scholar
  51. Zhang, L., Baba, K., Liang, P., Shimizu, H., & Utada, H. (2014). The 2011 Tohoku Tsunami observed by an array of ocean bottom electromagnetometers. Geophysical Research Letters, 41, 4937–4944. doi:10.1002/2014GL060850.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • N. R. Schnepf
    • 1
    • 2
  • C. Manoj
    • 1
    • 2
  • C. An
    • 3
  • H. Sugioka
    • 4
  • H. Toh
    • 5
  1. 1.University of Colorado at Boulder, CIRESBoulderUSA
  2. 2.National Centers for Environmental InformationNational Oceanic and Atmospheric AdministrationBoulderUSA
  3. 3.School of Civil and Environmental EngineeringCornell UniversityIthacaUSA
  4. 4.Department of PlanetologyKobe UniversityKobeJapan
  5. 5.Data Analysis Center for Geomagnetism and Space MagnetismKyoto UniversityKyotoJapan

Personalised recommendations