Pure and Applied Geophysics

, Volume 173, Issue 9, pp 3141–3163 | Cite as

Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

  • Setigui Aboubacar KeitaEmail author
  • Eric Girard


Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska. Simulation results of the TICs-2 observed on April 15th and 25th (acidic cases) and TICs-1 observed on April 5th (non-acidic cases) are presented. Our results show that the stochastic approach based on the classical nucleation theory with the appropriate contact angle is better. Parameterizations of ice nucleation based on the singular approach tend to overestimate the ice crystal concentration in TICs-1 and TICs-2. The classical nucleation theory using the appropriate contact angle is the best approach to use to simulate the ice clouds investigated in this research.


Arctic ice clouds cloud microphysics numerical modeling Arctic climate ice nuclei 



We thank NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) and NSERC (Natural Sciences and Engineering Research Council of Canada) for funding support and ARM (Atmospheric Radiation Measurement Program) for the data collected during ISDAC


  1. Atkinson, D. E., Sassen, K., Hayashi, M., Cahill, C. F., Shaw, G., Harrigan, D., & Fuelberg, H. (2011). ARCTAS-A ground-based observational campaign and meteorological context, interior Alaska, April 2008. Atmospheric Chemistry and Physics Discussions, 11(6), 16499–16552. doi: 10.5194/acpd-11-16499-2011.
  2. Beesley, J. A., Bretherton, C. S., Jakob, C., Andreas, E. L., Intrieri, J. M., & Uttal, T. A. (2000). A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. Journal of Geophysical Research, 105(D10), 12337. doi: 10.1029/2000jd900079.
  3. Bigg, E. K. (1953). The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of The Royal Meteorological Society.Google Scholar
  4. Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D.,… Froyd, K. D. (2012). Aerosol classification using airborne High Spectral Resolution Lidar measurements—methodology and examples. Atmospheric Measurement Techniques, 5(1), 73–98. doi: 10.5194/amt-5-73-2012.
  5. Chernoff, D., Bertram, AK. (2010). Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals. Journal of Geophysical Research, 115. Google Scholar
  6. Connolly, P. J., Mohler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., & Gallagher, M. (2009). Studies of heterogeneous freezing by three different desert dust samples. Atmospheric Chemistry and Physics.Google Scholar
  7. Côté, J., Gravel, S., Methot, A., Patoine, A., Roch, M., & Staniforth, A. (1998). The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design, considerations, and formulation. Mon. Weather Rev, 126, 1373–1395.Google Scholar
  8. DeMott J. Paul, M. P. M., and William R. Cotton. (1994). Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds. American Meteorological society, 51(1), 77–90.Google Scholar
  9. Doelling, D. R., Minnis, P., Spangenberg, D. A., Chakrapani, V., Mahesh, A., Pope, S. K., & Valero, F. P. J. (2001). Cloud radiative forcing at the top of the atmosphere during FIRE ACE derived from AVHRR data. Journal of Geophysical Research: Atmospheres, 106(D14), 15279–15296. doi: 10.1029/2000jd900455.
  10. Eastwood, M. L., Cremel, S., Gehrke, C., Girard, E., & Bertram, A. K. (2008). Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. Journal of Geophysical Research, 113(D22). doi: 10.1029/2008jd010639.
  11. Eastwood, M. L., Cremel, S., Wheeler, M., Murray, B. J., Girard, E., & Bertram, A. K. (2009). Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophysical Research Letters, 36(2), n/a–n/a. doi: 10.1029/2008gl035997.
  12. Fletcher NH. (1962). Physics of Rain Clouds. Cambridge University Press: Cambridge.Google Scholar
  13. Girard, E., Dueymes, G., Du, P., & Bertram, A. K. (2013). Assessment of the effects of acid-coated ice nuclei on the Arctic cloud microstructure, atmospheric dehydration, radiation and temperature during winter. International Journal of Climatology, 33(3), 599–614. doi: 10.1002/joc.3454.
  14. Grenier, P., Blanchet, J. P., & Muñoz-Alpizar, R. (2009). Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007. Journal of Geophysical Research, 114(D9). doi: 10.1029/2008jd010927.
  15. Gultepe, I., Isaac, G.A., Cober, S.G., (2001). Ice crystal number concentration versus temperature for climate studies. Int. J. Climatol. 21, 1281–1302.Google Scholar
  16. Hoose, C., & Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12(20), 9817–9854. doi: 10.5194/acp-12-9817-2012.
  17. Intrieri, J. M., & Shupe, M. D. (2004). Characterization and radiative effects of diamond dust of the Western Arctic Ocean region. Journal of Climate.Google Scholar
  18. Jouan, C., Girard, E., Pelon, J., Gultepe, I., Delanoë, J., & Blanchet, J.-P. (2012). Characterization of Arctic ice cloud properties observed during ISDAC. Journal of Geophysical Research, 117(D23). doi: 10.1029/2012jd017889.
  19. Jouan, C., Pelon, J., Girard, E., Ancellet, G., Blanchet, J. P., & Delanoë, J. (2013). On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008. Atmospheric Chemistry and Physics Discussions, 13(2), 4331–4389. doi: 10.5194/acpd-13-4331-2013.
  20. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., & Potter, G. L. (2002). NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11), 1631–1643. doi: 10.1175/bams-83-11-1631.
  21. Lampert, A., Ehrlich, A., Dörnbrack, A., Jourdan, O., Gayet, J.-F., Mioche, G.,… Wendisch, a. M. (2009). Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations—a case study. Atmospheric Chemistry and Physics, 6, 2647–2661.Google Scholar
  22. Li. J, & Barker, H. W. (2005). A Radiation Algorithm with Correlated-k Distribution. Part I: Local Thermal Equilibrium. 288 Journal of the Atmospheric Sciences, 62(2). doi: 10.1175/JAS-3396.1.
  23. Lüönd, F., Stetzer, O., Welti, A., & Lohmann, U. (2010). Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. Journal of Geophysical Research: Atmospheres, 115, D14201. doi: 10.1029/2009jd012959.
  24. McFarquhar, G. M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J. W., Schmid, B.,… Glen, A. (2011). Indirect and Semi-direct Aerosol Campaign. Bulletin of the American Meteorological Society, 92(2), 183–201. doi: 10.1175/2010bams2935.1.
  25. Meyers P. Michael, P. J. D., and William R. Cotton. (1992). New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model. Journal of Applied Meteorology and Climatology, 31(7).Google Scholar
  26. Milbrandt JA, & MK, Y. (2005). A multimoment bulk microphysics parameterization. Part I: analysis of the role of the spectral shape parameter. American Meteorological society, 62(9). doi: 10.1175/JAS3534.1.
  27. Murray, B. J., Broadley, S. L., Wilson, T. W., Atkinson, J. D., & Wills, R. H. (2011). Heterogeneous freezing of water droplets containing kaolinite particles. Atmospheric Chemistry and Physics, 11(9), 4191–4207. doi: 10.5194/acp-11-4191-2011.
  28. Murray, B. J., O’Sullivan, D., Atkinson, J. D., & Webb, M. E. (2012). Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev, 41(19), 6519–6554. doi: 10.1039/c2cs35200a.
  29. Niedermeier, D., Hartmann, S., Shaw, R. A., Covert, D., Mentel,T. F., Schneider, J., Poulain, L., Reitz, P., Spindler, C., Clauss, T., Kiselev, A., Hallbauer, E., Wex, H., Mildenberger, K., & Stratmann, F. (2010). Heterogeneous freezing of droplets with immersed mineral dust particles- measurements and parameterization. Atmospheric Chemistry and Physics. 10, 3601–3614. doi: 10.5194/acp-10-3601-2010.
  30. Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Connolly, P.,… Leisner, T. (2012). A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles. Journal of the Atmospheric Sciences, 69(10), 3077–3092. doi: 10.1175/jas-d-11-0249.1.
  31. Noilhan, J. a. S. P. (1989). A simple parameterization of land surface processes for meteorological models. American Meteorological society, 117, 536–549.Google Scholar
  32. Pruppacher H. R. and J. D. Klett. (1997). Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht.Google Scholar
  33. Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R., Starkweather, S. M., & Shiobara, M. (2011). Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties. Journal of Applied Meteorology and Climatology, 50(3), 626–644. doi: 10.1175/2010jamc2467.1.
  34. Shupe, M. D., & Intrieri, J. M. (2003). Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle. Journal of Climate.Google Scholar
  35. Sullivan, R. C., Petters, M. D., DeMott, P. J., Kreidenweis, S. M., Wex, H., Niedermeier, D.,… Sierau, B. (2010). Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmospheric Chemistry and Physics, 10(23), 11471–11487. doi: 10.5194/acp-10-11471-2010.
  36. Tobo, Y., DeMott, P. J., Raddatz, M., Niedermeier, D., Hartmann, S., Kreidenweis, S. M.,… Wex, H. (2012). Impacts of chemical reactivity on ice nucleation of kaolinite particles: A case study of levoglucosan and sulfuric acid. Geophysical Research Letters, 39(19), n/a–n/a. doi: 10.1029/2012gl053007.
  37. Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., de Gouw, J. A., Fahey, D. W.,… Veres, P. (2009). Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36(2), n/a–n/a. doi: 10.1029/2008gl036194.
  38. Wheeler, M. J., & Bertram, A. K. (2012). Deposition nucleation on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle. Atmospheric Chemistry and Physics 12, 1189–1201. doi: 10.5194/acp-12-1189-2012.
  39. Young, K. C. (1974). A Numerical Simulation of Wintertime, Orographic Precipitation: Part I. Description of Model Microphysics and Numerical Techniques. Journal of the Atmospheric Sciences.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric Sciences, ESCER CentreUniversity of Quebec at MontrealMontréalCanada

Personalised recommendations