Pure and Applied Geophysics

, Volume 173, Issue 7, pp 2325–2355 | Cite as

Fault Reactivation Analysis Using Microearthquake Clustering Based on Signal-to-Noise Weighted Waveform Similarity

  • Michael GrundEmail author
  • Jörn C. Groos
  • Joachim R. R. Ritter


The cluster formation of about 2000 induced microearthquakes (mostly M L < 2) is studied using a waveform similarity technique based on cross-correlation and a subsequent equivalence class approach. All events were detected within two separated but neighbouring seismic volumes close to the geothermal powerplants near Landau and Insheim in the Upper Rhine Graben, SW Germany between 2006 and 2013. Besides different sensors, sampling rates and individual data gaps, mainly low signal-to-noise ratios (SNR) of the recordings at most station sites provide a complication for the determination of a precise waveform similarity analysis of the microseismic events in this area. To include a large number of events for such an analysis, a newly developed weighting approach was implemented in the waveform similarity analysis which directly considers the individual SNRs across the whole seismic network. The application to both seismic volumes leads to event clusters with high waveform similarities within short (seconds to hours) and long (months to years) time periods covering two magnitude ranges. The estimated relative hypocenter locations are spatially concentrated for each single cluster and mirror the orientations of mapped faults as well as interpreted rupture planes determined from fault plane solutions. Depending on the waveform cross-correlation coefficient threshold, clusters can be resolved in space to as little as one dominant wavelength. The interpretation of these observations implies recurring fault reactivations by fluid injection with very similar faulting mechanisms during different time periods between 2006 and 2013.


Waveform similarity cross-correlation microearthquakes induced seismicity fractures 



We thank P. Knopf, R. Plokarz and W. Scherer for help with data acquisition and processing, Prof. G. Eisbacher for fruitful discussions and Dr. J. Daniell for language editing. Jens Zeiß provided hypocentre information. Seismic waveforms for this study were kindly provided by BESTEC GmbH, geo x GmbH and the KIT KABBA datacentre. Data of tectonic elements were provided by the EU-project GeORG (, GeORG-Projektteam 2013) and we thank J. Tesch and B. Schmidt (LGB Mainz) for information on the local geology. Further, we thank Dr. A. Barth for his helpful comments to an early version of the manuscript. Two anonymous reviewers helped to clarify several points in the manuscript. This study is part of the research project MAGS (Microseismic Activity of Geothermal Systems) which is funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety of the Federal Republic of Germany (FKZ 0325191A-F) and supervised by Projektträger Jülich (PT-J).


  1. Arrowsmith, S.J., and Eisner, L. (2006), A technique for identifying microseismic multiplets and application to the Valhall field, North Sea, Geophysics 71(2), 31–40.Google Scholar
  2. Asanuma, H., Kumano, Y., Hotta, A., Schanz, N.H., and Häring, M. (2007), Analysis of microseismic events from a stimulation at Basel, Switzerland, GRC Transactions 31, 265–270.Google Scholar
  3. Aster, R.C., and Scott, J. (1993), Comprehensive characterization of waveform similarity in microearthquake data sets, Bull. Seism. Soc. Am. 83(4), 1307–1314.Google Scholar
  4. Augliera, P., Cattaneo, M., and Eva, C. (1995), Seismic multiplets analysis and its implication in seismotectonics, Tectonophysics 248, 219-234.Google Scholar
  5. Baisch, S., Bohnhoff, M., Ceranna, L., Tu, Y., and Harjes, H.-P. (2002), Probing the crust to 9-km depth: fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole, Germany, Bull. Seism. Soc. Am. 92(6) 2369–2380.Google Scholar
  6. Baisch, S., Ceranna, L., and Harjes, H.P. (2008), Earthquake cluster: what can we learn from waveform similarity?, Bull. Seism. Soc. Am. 98(6), 2806–2814.Google Scholar
  7. Barth, A., Ritter, J., and Wenzel, F. (2015), Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe, Tectonophysics 651652, 172–185.Google Scholar
  8. Cattaneo, M., Augliera, P., Spallarossa, D., and Eva, C. (1997), Reconstruction of seismogenetic structures by multiplet analysis: an example of Western Liguria, Italy, Bull. Seism. Soc. Am. 87(4), 971–986.Google Scholar
  9. Cattaneo, M., Augliera, P., Spallarossa, D., and Lanza, V. (1999), A waveform similarity approach to investigate seismicity patterns, Natural Hazards 19(2–3), 123–138.Google Scholar
  10. Cesca, S., Şen, A.T., and Dahm, T. (2014), Seismicity monitoring by cluster analysis of moment tensors, Geophys. J. Int. 196, 1813–1826.Google Scholar
  11. Cornet, F.H. and Scotti, O. (1993), Analysis of induced seismicity for fault zone identification, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30(7), 789-795.Google Scholar
  12. Cornet, F.H., Helm, J., Poitrenaud, H., and Etchecopar, A. (1997), Seismic and aseismic slips induced by large-scale fluid injections, Pure appl. Geophys. 150, 563–583.Google Scholar
  13. Cuenot, N., Dorbath, C., and Dorbath, L. (2008), Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz–sous–Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties, Pure appl. geophys. 165, 797–828.Google Scholar
  14. Deichmann, N., and Garcia-Fernandez, M. (1992), Rupture geometry from high–precision relative hypocentre locations of microearthquake clusters, Geophys. J. Int. 110, 501–517.Google Scholar
  15. Deichmann, N., Kraft, T., and Evans, K.F. (2014), Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events, Geothermics 52, 84-97.Google Scholar
  16. Expertengruppe (2010), Das seismische Ereignis bei Landau vom 15. August 2009, Abschlussbericht, (last access 5 March 2015).
  17. Ferretti, G., Massa, M., and Solarino, S. (2005), An improved method for the recognition of seismic families: application to the Garfagnana–Lunigiana area, Italy, Bull. Seism. Soc. Am. 95(5), 1903–1915.Google Scholar
  18. Frémont, M.J., and Malone, S.D. (1987), High precision relative locations of earthquakes at Mount St. Helens, Washington, J. Geophys. Res. 92(B10), 10,223–10,236.Google Scholar
  19. Frietsch, M., Groos, J., and Ritter, J. (2015), Detection and delineation of a fracture zone with observation of seismic shear wave anisotropy in the Upper Rhine Graben, SW Germany, Pure appl. geophys. 172, 267–282.Google Scholar
  20. Gaßner, L., Groos, J., and Ritter, J. (2014), Herdflächenanalyse induzierter Erdbeben in der Südpfalz: Reaktivierung präexistenter Bruchflächen und Spannungszustand, Mainzer geowiss. Mitt. 42, 195–213.Google Scholar
  21. Geller, J., and Mueller, C.S. (1980), Four similar earthquakes in central California, Geophys. Res. Lett. 7(10), 821–824.Google Scholar
  22. GeORG-Projektteam (2013), Geopotenziale des tieferen Untergrundes im Oberrheingraben. Fachlich– Technischer Abschlussbericht des Interreg–Projekts GeORG, Teile 1–4. – Internet (PDF- Dokument:, last access 5 March 2015).
  23. Gibbons, S., Bøttger Sørensen, M., Harris, D., and Ringdal, F. (2007), The detection and location of low magnitude earthquakes in northern norway using multi-channel waveform correlation at regional distances, Phys. Earth Planet. Inter. 160, 285–309.Google Scholar
  24. Got, J.L., and Fréchet, J. (1993), Origins of amplitude variations in seismic doublets: source or attenuation process?, Geophys. J. Int. 114, 325-340.Google Scholar
  25. Groos, J., and Ritter, J. (2010), Seismic noise: A challenge and opportunity for seismological monitoring in densely populated areas, in Ritter, J., and Oth, A. (eds.) Proceedings of the Workshop: Induced Seismicity, Cahiers du Centre Européen de Géodynamique et de Séismologie 30 87–97.Google Scholar
  26. Groos, J., Grund, M., and Ritter, J. (2012), Automated detection of microseismic events in the Upper Rhine valley near the city of Landau/South Palatinate, Geophys. Res. Abstr. 14, EGU2012-10482.Google Scholar
  27. Groos, J., Zeiß, J., Grund, M., and Ritter, J. (2013a), Microseismicity at two geothermal power plants at Landau and Insheim in the Upper Rhine Graben, Germany, Geophys. Res. Abstr. 15, EGU2013-2742.Google Scholar
  28. Groos, J.C., Fritschen, R., and Ritter, J.R.R. (2013b), Untersuchung induzierter Erdbeben hinsichtlich ihrer Spürbarkeit und eventueller Schadenswirkung anhand DIN 4150, Bauingenieur 88, 374–384.Google Scholar
  29. Häring, M.O., Schanz, U., Ladner, F., and Dyer, B.C. (2008), Characterisation of the Basel 1 enhanced geothermal system, Geothermics 37, 469–495.Google Scholar
  30. Horstmann, T., Harrington, R.M., and Cochran, E.S. (2013), Semiautomated tremor detection using a combined cross-correlation and neural network approach, J. geophys. Res. 118, 4827–4846.Google Scholar
  31. Igarashi, T., Matsuzawa, T., and Hasegawa, A. (2003), Repeating earthquakes and interplate aseismic slip in the northeastern japan subduction zone, J. geophys. Res. 108(B5), 2156-2202.Google Scholar
  32. Kraft, T., and Deichmann, N. (2014), High-precision relocation and focal mechanism of the injection-induced seismicity at the Basel EGS, Geothermics 52, 59–73Google Scholar
  33. Leydecker, G. (2011), Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008, Geologisches Jahrbuch, Reihe E 59, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  34. Massa, M., Eva, E., Spallarossa, D., and Eva, C. (2006), Detection of earthquake clusters on the basis of waveform similarity: an application in the monferrato region (Piedmont, Italy), J. Seismol. 10(1), 1–22.Google Scholar
  35. Maurer, H., and Deichmann, N. (1995), Microearthquake cluster detection based on waveform similarities, with an application to the western Swiss Alps, Geophys. J. Int. 123, 588–600.Google Scholar
  36. Meier, L., and Eisbacher, G. (1991), Crustal kinematics and deep structure of the northern Rhine graben, Germany, Tectonics 10, 621–630.Google Scholar
  37. Moriya, H., Niitsuma, H., and Baria, R. (2003), Multiplet–clustering analysis reveals structural details within the seismic cloud at the Soultz Geothermal Field, France, Bull. Seism. Soc. Am. 93(4), 1606–1620.Google Scholar
  38. Nishigami, K. (1987), Clustering structure and fracture process of microearthquake sequences, J. Phys. Earth 35, 425–448.Google Scholar
  39. Plenefisch, T., and Bonjer, K.P. (1997), The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters, Tectonophysics 275, 71–91.Google Scholar
  40. Plenkers, K., Ritter, J.R.R., and Schindler, M. (2013), Low signal–to–noise event detection based on waveform stacking and cross–correlation: application to a stimulation experiment, J. Seismol. 17(1), 27–49.Google Scholar
  41. Poupinet, G., Ellsworth, W.L., and Frechet, J. (1984), Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California, J. Geophys. Res. 89(B7), 5719–5731.Google Scholar
  42. Press, W.H., Flannery, P.B., Teukolsky, S.A., and Vetterling, W.T. (1988), Numerical Recipes in C, The Art of Scientific Computing, 1st edn (Cambridge University Press, Cambridge, UK).Google Scholar
  43. Priddy, K.L., and Keller, P.E. (2005) Artificial Neural Networks: An Introduction (SPIE Publications, Bellingham, WA, USA).Google Scholar
  44. Ritter, J., Wagner, M., Bonjer, K.P., and Schmidt, B. (2009), The Heidelberg and Speyer earthquakes and their relationships to active tectonics in the central Upper Rhine Graben, Int. J. Earth Sci. 98, 697–705.Google Scholar
  45. Ritter, J.R.R. (2011), Konzeptionelle Ansätze zur Überwachung induzierter Seismizität im Oberrheingraben in Rheinland–Pfalz, Mainzer geowiss. Mitt. 39, 157–176.Google Scholar
  46. Ritter, J.R.R., Wagner, M., Wawerzinek, B., and Wenzel, F. (2008), Aims and first results of the TIMO project – Tiefenstruktur des mittleren Oberrheingrabens, Geotect. Res. 95(1), 151–154.Google Scholar
  47. Schad, A. (1962), Das Erdölfeld Landau, Abh. geol. Landesamt Baden–Württemberg 4, 81–101.Google Scholar
  48. Schaff, D.P., Bokelmann, G.H.R., Ellsworth, W.L., Zanzerkia, E., Waldhauser, F., and Beronza, G.C. (2004), Optimizing correlation techniques for improved earthquake location, Bull. Seism. Soc. Am. 94(2), 705–721.Google Scholar
  49. Simpson, D. (1986), Triggered earthquakes, Ann. Rev. Earth Planet. Sci. 14, 21–42.Google Scholar
  50. Snoke, J. (2003), FOCMEC: FOCal MEChanism determinations (Inter. Handbook of Earthquake and Engineering Seismology, 81B, 29–30, Academic Press, London).Google Scholar
  51. Staudt, S., Brüstle, A., and Ritter, J.R.R. (2016), Bestimmung von 1-D seismischen Geschwindigkeitsmodellen in der Südpfalz, Mainzer geowiss. Mitt., submitted.Google Scholar
  52. von Seggern, D.H. (2006), CRC Standard Curves and Surfaces with Mathematica, 2nd edn (Chapman and Hall/CRC, Boca Raton, FL, USA).Google Scholar
  53. Waldhauser, F. (2001), HypoDD – a computer program to compute double – difference earthquake locations. U.S. Geological Survey Open–File Report 01–113, (last access 5 March 2015).
  54. Waldhauser, F., and Ellsworth, W. (2000), A double–difference earthquake location algorithm: Method and application to the northern Hayward fault, Bull. Seism. Soc. Am. 90, 1353–1368.Google Scholar
  55. Wehling-Benatelli, S., Becker, D., Bischoff, M., Friederich, W., and Meier, T. (2013), Indications for different types of brittle failure due to active coal mining using waveform similarities of induced seismic events, Solid Earth 4(2), 405–422.Google Scholar
  56. Zeiß, J. (2013), Präzise Lokalisierung mikroseismischer Ereignisse im Umfeld geothermischer Kraftwerke in der Südpfalz, diploma thesis, Karlsruhe Institute of Technology, Geophysical Institute, in GermanGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Michael Grund
    • 1
    Email author
  • Jörn C. Groos
    • 1
    • 2
  • Joachim R. R. Ritter
    • 1
  1. 1.Karlsruhe Institute of Technology, Geophysical InstituteKarlsruheGermany
  2. 2.German Aerospace Center (DLR), Institute of Transportation SystemsBrunswickGermany

Personalised recommendations