Pure and Applied Geophysics

, Volume 173, Issue 5, pp 1431–1449 | Cite as

Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38°–18°S)

  • M. MétoisEmail author
  • C. Vigny
  • A. Socquet
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015


The recent expansion of dense GPS networks over plate boundaries allows for remarkably precise mapping of interseismic coupling along active faults. The interseismic coupling coefficient is related to the ratio between slipping velocity on the fault during the interseismic period and the long-term plates velocity, but the interpretation of coupling in terms of mechanical behavior of the fault is still unclear. Here, we investigate the link between coupling and seismicity over the Chilean subduction zone that ruptured three times in the last 5 years with major earthquakes (Maule Mw 8.8 in 2010, Iquique Mw 8.1 in 2014 and Illapel Mw 8.4 in 2015). We combine recent GPS data acquired over the margin (38°–18°S) with older data to get the first nearly continuous picture of the interseismic coupling variations on the subduction interface. Here, we show that at least six low coupling zones (LCZ), areas where coupling is low relatively to the neighboring highly coupled segments can be identified. We also find that for the three most recent Mw > 8 events, co-seismic asperities correlate well with highly coupled segments, while LCZs behaved as barriers and stopped the ruptures. The relation between coupling and background seismicity in the interseismic period before the events is less clear. However, we note that swarm sequences are prone to occur in intermediate coupling areas at the transition between LCZ and neighboring segments, and that the background seismicity tends to concentrate on the downdip part of the seismogenic locked zone. Thus, highly coupled segments usually exhibit low background seismicity. In this overall context, the Metropolitan segment that partly ruptured during the 2015 Illapel earthquake appears as an outlier since both coupling and background seismicity were high before the rupture, raising the issue of the remaining seismic hazard in this very densely populated area.


Interseismic coupling subduction zone Chile megathrust earthquakes seismic swarms segmentation 



We are grateful to all people that have been involved throughout the years in the field work and maintenance of the GPS network, in particular D. Carrizo, A. Delorme, S. Peyrat, C. Bermejo and I. Ortega. This work has been supported by LiA “Montessus de Ballore” and received partial support from Grants ANR-2011-BS56-017 and ANR-2012-BS06-004 of the French ”Agence Nationale de la Recherche (ANR)". GPS receivers for campaign measurements were provided by RESIF (Réseau sismologique français). We thank Rob McCaffrey for freely providing Tdefnode, and the Centro Sismologico Nacional of Universidad de Chile, Santiago, for making their catalog available. All the figures have been done using Generic Mapping Tools. We thank two anonymous reviewers for their useful comments on this work.

Supplementary material

24_2016_1280_MOESM1_ESM.pdf (7.8 mb)
Supplementary Material 1 (PDF 8018 kb)
24_2016_1280_MOESM2_ESM.txt (3 kb)
Supplementary Material 2 (TXT 4 kb)


  1. Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., and Braitenberg, C. (2014). Goce derived vertical gravity gradient delineates great earthquake rupture zones along the chilean margin. Tectonophysics, doi: 10.1016/j.tecto.2014.03.011, 622:198–215.
  2. Aránguiz, R., González, G., González, J., Catalán, P.A, Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I. et al. (2016) The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure and Applied Geophysics, 1–16.Google Scholar
  3. Argus, D. F., Gordon, R. G., and DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2011GC003751, 12(11).
  4. Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., and Kausel, E. (2010). The west andean thrust, the san ramón fault, and the seismic hazard for santiago, chile. Tectonics, doi: 10.1029/2008TC002427, 29(2).
  5. Armijo, R. and Thiele, R. (1990). Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? Earth and Planetary Science Letters, doi: 10.1016/0012-821X(90)90087-E, 98(1):40–61.
  6. Arriagada, C., Roperch, P., Mpodozis, C., and Cobbold, P. (2008). Paleogene building of the bolivian orocline: Tectonic restoration of the central andes in 2-d map view. Tectonics, doi: 10.1029/2008TC002269, 27(6).
  7. Béjar-Pizarro, M., Carrizo, D., Socquet, A., Armijo, R., Barrientos, S., Bondoux, F., Bonvalot, S., Campos, J., Comte, D., De Chabalier, J., et al. (2009). Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophysical Journal International, doi: 10.1111/j.1365-246X.2010.04748.x.
  8. Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., and Simons, M. (2013). Andean structural control on interseismic coupling in the north chile subduction zone. Nature Geoscience, doi: 10.1038/ngeo1802, 6(6):462–467.
  9. Bevis, M., Kendrick, E., Smalley Jr, R., Brooks, B., Allmendinger, R., and Isacks, B. (2001). On the strength of interplate coupling and the rate of back arc convergence in the central Andes: An analysis of the interseismic velocity field. Geochemistry Geophysics Geosystems, doi: 10.1029/2001GC000198, 2(11):1067.
  10. Bevis, M., Kendrick, E., Smalley Jr, R., Herring, T., Godoy, J., and Galban, F. (1999). Crustal motion north and south of the Arica deflection: comparing recent geodetic results from the Central Andes. Geochemistry Geophysics Geosystems, doi: 10.1029/1999GC000011, 1(12):1005.
  11. Bie, L. and Ryder, I. (2015). The 2005 tarapaca earthquake: a likely indirect trigger of the 2014 iquique earthquake. In EGU General Assembly Conference Abstracts, volume 17, page 10013.Google Scholar
  12. Brooks, B., Bevis, M., Smalley Jr, R., Kendrick, E., Manceda, R., Lauría, E., Maturana, R., and Araujo, M. (2003). Crustal motion in the Southern Andes (26–36 S): Do the Andes behave like a microplate? Geochemistry Geophysics Geosystems, doi: 10.1029/2003GC000505, 4(10):1085.
  13. Brooks, B., Bevis, M., Whipple, K., Arrowsmith, J., Foster, J., Zapata, T., Kendrick, E., Minaya, E., Echalar, A., Blanco, M., et al. (2011). Orogenic-wedge deformation and potential for great earthquakes in the central andean backarc. Nature Geoscience, doi: 10.1038/ngeo1143, 4(6):380–383.
  14. Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., and Apel, E. (2005). Interseismic coupling and asperity distribution along the kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, doi: 10.1029/2005JB003648, 110(B7).
  15. Calisto, I., Miller, M., and Constanzo, I. (2016). Comparison between tsunami signals generated by different source models and the observed data of the illapel 2015 earthquake. Pure and Applied Geophysics, pages 1–11.Google Scholar
  16. Chlieh, M., Avouac, J., Sieh, K., Natawidjaja, D. H., and Galetzka, J. (2008). Heterogeneous coupling of the sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth (1978–2012), doi: 10.1029/2007JB004981, 113(B5).
  17. Chlieh, M., Perfettini, H., Tavera, H., Avouac, J., Remy, D., Nocquet, J., Rolandone, F., Bondoux, F., Gabalda, G., and Bonvalot, S. (2011). Interseismic coupling and seismic potential along the central andes subduction zone. Journal of Geophysical Research, doi: 10.1029/2010JB008166, 116(B12):B12405.
  18. Comte, D., Haessler, H., Dorbath, L., Pardo, M., Monfret, T., Lavenu, A., Pontoise, B., and Hello, Y. (2002). Seismicity and stress distribution in the copiapo, northern chile subduction zone using combined on-and off-shore seismic observations. Physics of the earth and planetary interiors, doi: 10.1016/S0031-9201(02)00052-3, 132(1):197–217.
  19. Comte, D. and Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1):23–44.Google Scholar
  20. Contreras-Reyes, E. and Carrizo, D. (2011). Control of high oceanic features and subduction channel on earthquake ruptures along the chile–peru subduction zone. Physics of the Earth and Planetary Interiors, doi: 10.1016/j.pepi.2011.03.002, 186(1):49–58.
  21. Cubas, N., Avouac, J., Souloumiac, P., and Leroy, Y. (2013). Megathrust friction determined from mechanical analysis of the forearc in the maule earthquake area. Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2013.07.037, 381:92–103.
  22. DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical research letters, doi: 10.1029/94GL02118, 21(20):2191–2194.
  23. Ducret, G., Doin, M., Grandin, R., Socquet, A., Vigny, C., Métois, M., and Béjar-Pizzaro, M. (2012). Measurement of interseismic strain accumulation in the southern andes (25°–35°s) using envisat sar data. In EGU General Assembly Conference Abstracts, volume 14, page 10391.Google Scholar
  24. Durand, V., Bouchon, M., Floyd, M. A., Theodulidis, N., Marsan, D., Karabulut, H., and Schmittbuhl, J. (2014). Observation of the spread of slow deformation in greece following the breakup of the slab. Geophysical Research Letters, doi: 10.1002/2014GL061408, 41(20):7129–7134.
  25. Gardner, J. and Knopoff, L. (1974). Is the sequence of earthquakes in southern california, with aftershocks removed, poissonian. Bull. Seismol. Soc. Am, 64(5):1363–1367.Google Scholar
  26. Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1. 0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth (1978–2012), doi: 10.1029/2011JB008524, 117(B1).
  27. Hetland, E. and Simons, M. (2010). Post-seismic and interseismic fault creep II: transient creep and interseismic stress shadows on megathrusts. Geophysical Journal International, doi: 10.1111/j.1365-246X.2009.04482.x, 181(1):99–112.
  28. Hoffmann-Rothe, A., Kukowski, N., Dresen, G., Echtler, H., Oncken, O., Klotz, J., Scheuber, E., and Kellner, A. (2006). Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. The Andes, pages 125–146.Google Scholar
  29. Holtkamp, S. and Brudzinski, M. R. (2014). Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures. Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2013.10.033, 390:234–243.
  30. Holtkamp, S. G., Pritchard, M., and Lohman, R. (2011). Earthquake swarms in South America. Geophysical Journal International, doi: 10.1111/j.1365-246X.2011.05137.x, 187(1):128–146.
  31. Kaneko, Y., Avouac, J., and Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, doi: 10.1038/ngeo843, 3(5):363–369.
  32. Kato, A. and Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 iquique, chile Mw 8.1 earthquake. Geophysical Research Letters, doi: 10.1002/2014GL061138, 41(15):5420–5427.
  33. Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., and Hirata, N. (2012). Propagation of slow slip leading up to the 2011 mw 9.0 tohoku-oki earthquake. Science, doi: 10.1126/science.1215141, 335(6069):705–708.
  34. Kausel, E. and Campos, J. (1992). The Ms= 8 tensional earthquake of 9 december 1950 of northern chile and its relation to the seismic potential of the region. Physics of the earth and planetary interiors, doi: 10.1016/0031-9201(92)90203-8, 72(3):220–235.
  35. Kendrick, E., Bevis, M., Smalley, R., and Brooks, B. (2001). An integrated crustal velocity field for the central Andes. Geochem. Geophys. Geosyst, doi: 10.1029/2001GC000191, 2(11):1066.
  36. Khazaradze, G. and Klotz, J. (2003). Short-and long-term effects of GPS measured crustal deformation rates along the south central Andes. Journal of geophysical research, doi: 10.1029/2002JB001879, 108(B6):2289.
  37. Klein, E., Fleitout, L., Vigny, C., and Garaud, J. (2016). Afterslip and viscoelastic relaxation model inferred from the large scale postseismic deformation following the 2010 Mw 8,8 Maule earthquake (Chile). Accepted for publication in Geophysical Journal International.Google Scholar
  38. Klotz, J., Khazaradze, G., Angermann, D., Reigber, C., Perdomo, R., and Cifuentes, O. (2001). Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth and Planetary Science Letters, doi: 10.1016/S0012-821X(01)00532-5, 193(3–4):437–446.
  39. Konca, A., Avouac, J., Sladen, A., Meltzner, A., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., et al. (2008). Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, doi: 10.1038/nature07572, 456(7222):631–635.
  40. Lay, T., Yue, H., Brodsky, E. E., and An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophysical Research Letters, doi: 10.1002/2014GL060238, 41(11):3818–3825.
  41. Li, S., Moreno, M., Bedford, J., Rosenau, M., and Oncken, O. (2015). Revisiting visco-elastic effects on interseismic deformation and locking degree: a case study of the Peru-North Chile subduction zone. Journal of Geophysical Research: Solid Earth, doi: 10.1002/2015JB011903.
  42. Lomnitz, C. (1970). Major earthquakes and tsunamis in Chile during the period 1535 to 1955. International Journal of Earth Sciences, 59(3):938–960.Google Scholar
  43. Loveless, J. and Meade, B. (2011). Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw9.0 Tohoku-Oki earthquake. Geophys. Res. Lett, doi: 10.1029/2011GL048561, 38:L17306.
  44. Maksymowicz, A. (2015). The geometry of the Chilean continental wedge: Tectonic segmentation of subduction processes off Chile. Tectonophysics, doi: 10.1016/j.tecto.2015.08.007, 659:183–196.
  45. Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., and Pardo, M. (2014). Flat versus normal subduction zones: a comparison based on 3-d regional traveltime tomography and petrological modelling of central chile and western Argentina (29°–35°s). Geophysical Journal International, doi: 10.1093/gji/ggu355, 199(3):1633–1654.
  46. McCaffrey, R. (2002). Crustal block rotations and plate coupling. Plate Boundary Zones, Geodyn. Ser, doi: 10.1029/GD030p0101, 30:101–122.
  47. McCaffrey, R. (2009). Time-dependent inversion of three-component continuous gps for steady and transient sources in northern Cascadia. Geophysical Research Letters, doi: 10.1029/2008GL036784, 36(7).
  48. McCaffrey, R. (2014). Interseismic locking on the Hikurangi subduction zone: Uncertainties from slow-slip events. Journal of Geophysical Research: Solid Earth, doi: 10.1002/2014JB010945, 119(10):7874–7888.
  49. Melnick, D. and Bookhagen, B. (2009). Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. Journal of Geophysical Research. B. Solid Earth, doi: 10.1029/2008JB005788, 114.
  50. Métois, M., Socquet, A., and Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central chile subduction zone. Journal of Geophysical Research, doi: 10.1029/2011JB008736, 117(B3).
  51. Métois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., Maureira, E., Valderas-Bermejo, M.-C., and Ortega, I. (2013). Revisiting the north chile seismic gap segmentation using gps-derived interseismic coupling. Geophysical Journal International, doi: 10.1093/gji/ggt183, 194(3):1283–1294.
  52. Métois, M., Vigny, C., Socquet, A., Delorme, A., Morvan, S., Ortega, I., and Valderas-Bermejo, C.-M. (2014). GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophysical Journal International, doi: 10.1093/gji/ggt418, 196(2):644–655.
  53. Moreno, M., Klotz, J., Melnick, D., Echtler, H., and Bataille, K. (2008). Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S). Geochem. Geophys. Geosyst, doi: 10.1029/2008GC002198, 9:36–39.
  54. Moreno, M., Rosenau, M., and Onken, . (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, doi: 10.1038/nature09349, 467.
  55. Muller, R., Roest, W., Royer, J., Gahagan, L., and Sclater, J. (1997). Digital isochrons of the world’s ocean floor. Journal of Geophysical Research, doi: 10.1029/96JB01781, 102(B2):3211–3214.
  56. Nocquet, J., Villegas-Lanza, J., Chlieh, M., Mothes, P., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., et al. (2014). Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, doi: 10.1038/NGEO2099, 7(4):287–291.
  57. Norabuena, E., Leffler-Griffin, L., Mao, A., Dixon, T., Stein, S., Sacks, I., Ocola, L., and Ellis, M. (1998). Space geodetic observations of Nazca-South America convergence across the central Andes. Science, doi: 10.1126/science.279.5349.358, 279(5349):358.
  58. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135–1154.Google Scholar
  59. Reilinger, R. and Kadinsky-Cade, K. (1985). Earthquake deformation cycle in the Andean back arc, western Argentina. Journal of Geophysical Research, doi: 10.1029/JB090iB14p12701, 90(B14):12701–12.
  60. Rogers, G. and Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, doi: 10.1126/science.1084783, 300(5627):1942–1943.
  61. Rousset, B., Lasserre, C., Cubas, N., Graham, S., Radiguet, M., DeMets, C., Socquet, A., Campillo, M., Kostoglodov, V., Cabral-Cano, E., et al. (2015). Lateral variations of interplate coupling along the mexican subduction interface: Relationships with long-term morphology and fault zone mechanical properties. Pure and Applied Geophysics, pages 1–20.Google Scholar
  62. Ruegg, J., Rudloff, A., Vigny, C., Madariaga, R., De Chabalier, J., Campos, J., Kausel, E., Barrientos, S., and Dimitrov, D. (2009). Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Physics of the Earth and planetary interiors, doi: 10.1016/j.pepi.2008.02.015, 175(1–2):78–85.
  63. Ruiz, S., Klein, E., del Campo, F., Rivera, E., Poli, P., Métois, M., Vigny, C., Baez, J., Vargas, G., Leyton, F., Madariaga, R., and Fleitout, L. (2016). The Illapel Mw 8.3 earthquake triggered by deep transient slow slip. Accepted in Seismological research letters.Google Scholar
  64. Ruiz, S., Métois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., and Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 iquique mw 8.1 earthquake. Science, doi: 10.1126/science.1256074, 345(6201):1165–1169.
  65. Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., and Asada, A. (2011). Displacement above the hypocenter of the 2011 tohoku-oki earthquake. Science, doi: 10.1126/science.1207401, 332(6036):1395–1395.
  66. Savage, J. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research-Solid Earth, doi: 10.1029/JB088iB06p04984, 88(B6).
  67. Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., et al. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature.Google Scholar
  68. Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J., Wei, S., Chu, R., et al. (2011). The 2011 Magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, doi: 10.1126/science.1206731, 332(6036):1421–1425.
  69. Sobiesiak, M., Meyer, U., Schmidt, S., Götze, H.-J., and Krawczyk, C. (2007). Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of antofagasta, Chile. Journal of Geophysical Research: Solid Earth, doi: 10.1029/2006JB004796, 112(B12).
  70. Song, T. and Simons, M. (2003). Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science, doi: 10.1126/science.1085557, 301(5633):630–633.
  71. Tassara, A., Gotze, H., Schmidt, S., and Hackney, R. (2006). Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research-Solid Earth, doi: 10.1029/2005JB003976, 111(B9).
  72. Thierer, P., Flueh, E., Kopp, H., Tilmann, F., Comte, D., and Contreras, S. (2005). Local earthquake monitoring offshore valparaiso, Chile. N. Jb. Geol. Paläont. Abh, 236(1/2):173–183.Google Scholar
  73. Trubienko, O., Fleitout, L., Garaud, J., and Vigny, C. (2013). Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes. Tectonophysics, doi: 10.1016/j.tecto.2012.12.027, 589:126–141.
  74. Vallee, M., Nocquet, J., Battaglia, J., Font, Y., Segovia, M., Regnier, M., Mothes, P., Jarrin, P., Cisneros, D., Vaca, S., et al. (2013). Intense interface seismicity triggered by a shallow slow slip event in the central ecuador subduction zone. Journal of Geophysical Research: Solid Earth, doi: 10.1002/jgrb.50216, 118(6):2965–2981.
  75. Vargas, G., Klinger, Y., Rockwell, T., Forman, S., Rebolledo, S., Baize, S., Lacassin, R., and Armijo, R. (2014). Probing large intraplate earthquakes at the west flank of the Andes. Geology, doi: 10.1130/G35741.1, 42(12):1083–1086.
  76. Vergnolle, M., Walpersdorf, A., Kostoglodov, V., Tregoning, P., Santiago, J., Cotte, N., and Franco, S. (2010). Slow slip events in Mexico revised from the processing of 11 year gps observations. Journal of Geophysical Research: Solid Earth (1978–2012), doi: 10.1029/2009JB006852, 115(B8).
  77. Vigny, C., Rudloff, A., Ruegg, J., Madariaga, R., Campos, J., and Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, doi: 10.1016/j.pepi.2008.02.013, 175(1–2):86–95.
  78. Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.-C., Métois, M., Madariaga, R., Morvan, S., Lancieri, M., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M.-C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavez, A., Vilotte, J. P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J.-C., Blanco, M., Cimbaro, S., and Kendrick, E. (2011). The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS. Science, doi: 10.1126/science.1204132, 332(6036):1417–21.
  79. Wallace, L., Beavan, J., McCaffrey, R., and Darby, D. (2004). Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. Journal of Geophysical Research, doi: 10.1029/2004JB003241, 109(B12):B12406.
  80. Wang, K. and Bilek, S. L. (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, doi: 10.1016/j.tecto.2013.11.024, 610:1–24.
  81. Ye, L., Lay, T., Kanamori, H., and Koper, K. (2015). Rapidly estimated seismic source parameters for the 16 september 2015 Illapel, Chile M w 8.3 earthquake. Pure and Applied Geophysics, pages 1–12.Google Scholar
  82. Yoshioka, S., Wang, K., and Mazzotti, S. (2005). Interseismic locking of the plate interface in the Northern Cascadia subduction zone, inferred from inversion of GPS data. Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2004.12.018, 231(3):239–247.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPEVilleurbanneFrance
  2. 2.Laboratoire de GéologieUMR 8538, CNRS, Ecole Normale Supérieure Paris, PSL-Research UniversityParis cedex 05France
  3. 3.Institut des Sciences de la TerreCNRS, Université Joseph Fourier, Université Grenoble-AlpesSaint-Martin-d’HèresFrance

Personalised recommendations