Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 4, pp 1011–1020 | Cite as

Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes

  • Ryo Okuwaki
  • Yuji Yagi
  • Rafael Aránguiz
  • Juan González
  • Gabriel González
Article
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015

Abstract

We constructed a seismic source model for the 2015 M W 8.3 Illapel, Chile earthquake, which was carried out with the kinematic waveform inversion method adopting a novel inversion formulation that takes into account the uncertainty in the Green’s function, together with the hybrid backprojection method enabling us to track the spatiotemporal distribution of high-frequency (0.3–2.0 Hz) sources at high resolution by using globally observed teleseismic P-waveforms. A maximum slip amounted to 10.4 m in the shallow part of the seismic source region centered 72 km northwest of the epicenter and generated a following tsunami inundated along the coast. In a gross sense, the rupture front propagated almost unilaterally to northward from the hypocenter at <2 km/s, however, in detail the spatiotemporal slip distribution also showed a complex rupture propagation pattern: two up-dip rupture propagation episodes, and a secondary rupture episode may have been triggered by the strong high-frequency radiation event at the down-dip edge of the seismic source region. High-frequency sources tends to be distributed at deeper parts of the slip area, a pattern also documented in other subduction zone megathrust earthquakes that may reflect the heterogeneous distribution of fracture energy or stress drop along the fault. The weak excitation of high-frequency radiation at the termination of rupture may represent the gradual deceleration of rupture velocity at the transition zone of frictional property or stress state between the megathrust rupture zone and the swarm area.

Keywords

2015 Illapel Chile earthquake Source process Kinematic waveform inversion Hybrid backprojection Subduction zone earthquake Along-dip rupture propagation 

Notes

Acknowledgments

Teleseismic waveforms and the strong motion data from the networks; Antarctic Seismographic Argentinean Italian Network (AI), Canadian National Seismograph Network (CN), GEOSCOPE (G), Global Telemetered Seismograph Network (USAF/USGS, GT), Global Seismograph Network (GSN - IRIS/IDA, II), Global Seismograph Network (GSN - IRIS/USGS, IU), and Red Sismologica Nacional (C1) are downloaded through the IRIS-DMC. Figures were generated with the Generic Mapping Tools (Wessel and Smith 1998). The authors thank Amato Kasahara and Bogdan Enescu for their valuable comments and suggestions. This work was supported by KAKENHI grant 24310133 from the Japan Society for the Promotion of Science. Chilean researchers would like to thank CONICYT grant FONDAP 15110017, FONDECYT 11140424 and the Chile-Japan Joint Project on Enhancement of Technology to Develop Tsunami Resilient Communities, sponsored by the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency through its SATREPS initiative. We acknowledge the editor and the two anonymous reviewers for their valuable comments and suggestions, which contribute to the significant improvement of the manuscript.

Supplementary material

24_2016_1271_MOESM1_ESM.pdf (5.2 mb)
Supplementary material 1 (PDF 5353 kb)

References

  1. Akaike, H. (1980), Likelihood and the Bayes procedure, Trab. Estad. Y Investig. Oper. 31, 143–166. doi: 10.1007/BF02888350.
  2. Amante, C. and Eakins, B. (2009), ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24. Natl. Geophys. Data Center, NOAA. doi: 10.7289/V5C8276M.
  3. Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I. and Rojas, C. (2016), The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives, Pure Appl. Geophys. 173, 333–348. doi: 10.1007/s00024-015-1225-4.
  4. Beck, S., Barrientos, S., Kausel, E. and Reyes, M. (1998), Source characteristics of historic earthquakes along the central Chile subduction Askew et Alzone, J. South Am. Earth Sci. 11, 115–129.Google Scholar
  5. Beresnev, I.A. (2003), Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review), Bull. Seismol. Soc. Am. 93, 2445–2458. doi: 10.1785/0120020225.
  6. Bernard, P. and Madariaga, R. (1984), A new asymptotic method for the modeling of near-field accelerograms, Bull. Seismol. Soc. Am. 74, 539–557.Google Scholar
  7. Contreras-Reyes, E., Becerra, J., Kopp, H., Reichert, C., Díaz-Naveas, J. and Contreras (2014), Seismic structure of the north-central Chilean convergent margin: subduction erosion of a paleomagmatic arc, Geophys. Res. Lett. 41, 1523–1529. doi: 10.1002/2013GL058729.
  8. DeMets, C., Gordon, R.G. and Argus, D.F. (2010), Geologically current plate motions, Geophys. J. Int. 181, 1–80. doi: 10.1111/j.1365-246X.2009.04491.x.
  9. Engdahl, E. and Villaseñor, A. (2002), 41 Global seismicity: 1900–1999. Int. geophys. 665–XVI doi: 10.1016/S0074-6142(02)80244-3.
  10. Fan, W. and Shearer, P.M. (2015), Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves, Geophys. Res. Lett. 42, 5744–5752. doi: 10.1002/2015GL064587.
  11. Fukuyama, E. and Madariaga, R. (1998), Rupture dynamics of a planar fault in a 3D elastic medium: rate- and slip-weakening friction, Bull. Seismol. Soc. Am. 88, 1–17.Google Scholar
  12. Gardi, A., Lemoine, A., Madariaga, R. and Campos, J. (2006), Modeling of stress transfer in the Coquimbo region of central Chile, J. Geophys. Res. 111, B04307. doi: 10.1029/2004JB003440.
  13. Hartzell, S. and Heaton, T. (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am. 73, 1553–1583. http://www.bssaonline.org/content/73/6A/1553.short.
  14. Hayes, G.P., Wald, D.J. and Johnson, R.L. (2012), Slab1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res. 117, B01302. doi: 10.1029/2011JB008524.
  15. Holtkamp, S. and Brudzinski, M.R. (2014), Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures, Earth Planet. Sci. Lett. 390, 234–243. doi: 10.1016/j.epsl.2013.10.033.
  16. Husseini, M. (1975), The fracture energy of earthquakes, Geophys. J. Int. 43, 367–385.Google Scholar
  17. Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005), Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array, Nature 435, 933–936. doi: 10.1038/nature03675.
  18. Kaneko, Y., Avouac, J.-P. and Lapusta, N. (2010), Towards inferring earthquake patterns from geodetic observations of interseismic coupling, Nat. Geosci. 3, 363–369. doi: 10.1038/ngeo843.
  19. Kennett, B.L.N., Engdahl, E.R. and Buland, R. (1995), Constraints on seismic velocities in the earth from travel times, Geophys. J. Int. 122, 108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x.
  20. Kikuchi, M. and Kanamori, H. (1991), Inversion of complex body waves—III, Bull. Seismol. Soc. Am. 81, 2335–2350.Google Scholar
  21. Koper, K.D., Hutko, A.R. and Lay, T. (2011), Along-dip variation of teleseismic short-period radiation from the 11 March 2011 Tohoku earthquake (Mw 9.0), Geophys. Res. Lett. 38, L21309. doi: 10.1029/2011GL049689.
  22. Krüger, F. and Ohrnberger, M. (2005), Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature 435, 937–939. doi: 10.1038/nature03696.
  23. Laske, G., Masters, G., Ma, Z. and Pasyanos, M. (2013), Update on CRUST1.0 - A 1-degree global model of earth’s crust. EGU gen. assem. conf. abstr. 2658.Google Scholar
  24. Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H. and Rushing, T.M. (2012), Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res. 117, B04311. doi: 10.1029/2011JB009133.
  25. Lemoine, A. and Madariaga, R. (2001), Evidence for earthquake interaction in central Chile: the July 1997–September 1998 Sequence, Geophys. Res. Lett. 28, 2743–2746. doi: 10.1029/2000GL012314.
  26. Lomnitz, C. (2004), Major earthquakes of Chile: a historical survey, 1535-1960, Seismol. Res. Lett. 75, 368–378. doi: 10.1785/gssrl.75.3.368.
  27. Madariaga, R. (1977), High-frequency radiation from crack (stress drop) models of earthquake faulting, Geophys. J. R. Astron. Soc. 51, 625–651.Google Scholar
  28. Melgar, D., Fan, W., Riquelme, S., Geng, J., Liang, C., Fuentes, M., Vargas, G., Allen, R.M., Shearer, P.M. and Fielding, E.J. (2016), Slip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake, Geophys. Res. Lett. 43, 961–966. doi: 10.1002/2015GL067369.
  29. Métois, M., Vigny, C., Socquet, A., Delorme, A., Morvan, S., Ortega, I. and Valderas-Bermejo, C.M. (2014), GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile, Geophys. J. Int. 196, 644–655. doi: 10.1093/gji/ggt418.
  30. Moreno, M., Rosenau, M. and Oncken, O. (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature 467, 198–202. doi: 10.1038/nature09349.
  31. Ohnaka, M. and Yamashita, T. (1989), A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res. 94, 4089. doi: 10.1029/JB094iB04p04089.
  32. Okuwaki, R., Yagi, Y. and Hirano, S. (2014), Relationship between high-frequency radiation and asperity ruptures, revealed by hybrid back-projection with a non-planar fault model, Sci. Rep. 4, 7120. doi: 10.1038/srep07120.
  33. Olson, A. and Apsel, R. (1982), Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake, Bull. Seismol. Soc. Am. 72, 1969–2001. http://www.bssaonline.org/content/72/6A/1969.short.
  34. Pardo, M., Comte, D., Monfret, T., Boroschek, R. and Astroza, M. (2002), The October 15, 1997 Punitaqui earthquake (Mw = 7.1): a destructive event within the subducting Nazca plate in the Central Chile, Tectonophysics 345, 199–210. doi: 10.1016/S0040-1951(01)00213-X.
  35. Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R. and Campos, J. (2014), Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake, Science 345, 1165–1169. doi: 10.1126/science.1256074.
  36. Spudich, P. and Frazer, L. (1984), Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop, Bull. Seismol. Soc. Am. 74, 2061–2082.Google Scholar
  37. Tassara, A. and Echaurren, A. (2012), Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int. 189, 161–168. doi: 10.1111/j.1365-246X.2012.05397.x.
  38. Udias, A., Madariaga, R., Buforn, E., Munoz, D. and Ros, M. (2012), The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents, Bull. Seismol. Soc. Am. 102, 1639–1653. doi: 10.1785/0120110289.
  39. Walker, K.T., Ishii, M. and Shearer, P.M. (2005), Rupture details of the 28 March 2005 Sumatra M w 8.6 earthquake imaged with teleseismic P waves, Geophys. Res. Lett. 32, L24303. doi: 10.1029/2005GL024395.
  40. Wessel, P. and Smith, W.H.F. (1998), New, improved version of generic mapping tools released, Eos, Trans. Am. Geophys. Union 79, 579–579. doi: 10.1029/98EO00426.
  41. Yagi, Y. and Fukahata, Y. (2011), Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes, Geophys. J. Int. 186, 711–720. doi: 10.1111/j.1365-246X.2011.05043.x.
  42. Yagi, Y. and Okuwaki, R. (2015), Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake, Geophys. Res. Lett. 42, 6229–6235. doi: 10.1002/2015GL064995.
  43. Yagi, Y., Nakao, A. and Kasahara, A. (2012), Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method, Earth Planet. Sci. Lett. 355–356, 94–101. doi: 10.1016/j.epsl.2012.08.018.
  44. Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S. and Komoro, T. (2014), Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity, Geophys. Res. Lett. 41, 4201–4206. doi: 10.1002/2014GL060274.
  45. Ye, L., Lay, T., Kanamori, H. and Koper, K.D. (2016), Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 Earthquake, Pure Appl. Geophys. 173, 321–332. doi: 10.1007/s00024-015-1202-y.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Department of Civil EngineeringUniversidad Católica de la Ssma ConcepciónConcepciónChile
  4. 4.Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales, CONICYT/FONDAP/1511007SantiagoChile
  5. 5.Departamento de Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile

Personalised recommendations