Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 4, pp 1051–1061 | Cite as

Comparison Between Tsunami Signals Generated by Different Source Models and the Observed Data of the Illapel 2015 Earthquake

  • Ignacia Calisto
  • Matthew Miller
  • Iván Constanzo
Article
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015

Abstract

A major interplate earthquake occurred on September 16th, 2015, near Illapel, central Chile. This event generated a tsunami of moderate height, however, one which caused significant near field damage. In this study, we model the tsunami produced by some rapid and preliminary fault models with the potential to be calculated within tens of minutes of the event origin time. We simulate tsunami signals from two different heterogeneous slip models, a homogeneous source based on parameters from the global CMT Project, and furthermore we used plate coupling data from GPS observations to construct a heterogeneous fault based on a priori knowledge of the subduction zone. We compare the simulated signals with the observed tsunami at tide gauges located along the Chilean coast and at offshore DART buoys. For this event, concerning rapid response, the homogeneous source and coupling model represent the tsunami at least as well as the heterogeneous sources. We suggest that the initial heterogeneous fault models could be better constrained with continuous GPS measurements in the rupture area, and additionally DART records directly in front of the rupture area, to improve the tsunami simulation based on quickly calculated models for near coastal areas. Additionally, in terms of tsunami modeling, the source estimated from prior plate coupling information in this case is representative of the event that later occurs; placing further importance on the need to monitor subduction zones with GPS.

Keywords

Tsunami signal slip model distribution earthquake rupture 

Notes

Acknowledgments

We would like to thank Roberto Benavente for sending us his W-phase model prior to its publication, Marianne Métois for providing her plate locking data and insightful comments, and finally SHOA for the bathymetry data. The DART records are available from NOAA’s National Data Buoy Center at http://www.ndbc.noaa.gov/dart.shtml. Figures in this study are produced using the Generic Mapping Toolkit of Wessel et al. (2013). Finally, we thank the editor and two anonymous reviewers for their insightful comments and suggestions which greatly improved both our understanding of tsunami data and the quality of this manuscript.

References

  1. Amante, C. and B. W. Eakins (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi: 10.7289/V5C8276M.
  2. Angermann, D. and J. Klotz (1999), Space-geodetic estimation of the Nazca-South America Euler vector, Earth planet. Sci. Lett., 171, 329-334.Google Scholar
  3. Anderson, J. (2004), Quantitative measure of the goodness-of-fit of synthetic seismograms, 13WCEE conference, paper No 243.Google Scholar
  4. Aránguiz, R., G. González, J. González, P. A. Catalán, R. Cienfuegos, Y. Yagi, R. Okuwaki, L. Urra, K. Contreras, I. Rio and C. Rojas (2016), The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives, Pure and Appl. Geophys., 173(2), 333–348, doi: 10.1007/s00024-015-1225-4.
  5. Beck, S., S. Barrientos, E. Kausel and M. Reyes (1998), Source characteristics of historic earthquakes along the central Chile subduction zone, J. South Am. Earth Sci., 11:2, 115-129.Google Scholar
  6. Becker, J. J., D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S.-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace and P. Weatherall (2009), Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30 PLUS, Marine Geodesy, 32:4, 355-371.Google Scholar
  7. Bellotti, G., R. Briganti and G. M. Beltrami (2012), The combined role of bay and shelf modes in tsunami amplification along the coast, J. Geophys. Res., 117, C08027, doi: 10.1029/2012JC008061.
  8. Benavente, R. and P. R. Cummins (2013), Simple and reliable finite fault solutions for large earthquakes using the W-phase: The Maule (Mw= 8.8) and Tohoku (Mw= 9.0) earthquakes, Geophys. Res. Lett., 40(14), 3591-3595.Google Scholar
  9. Benavente, R., P. R. Cummins and J. Dettmer (2016), Rapid automated W-phase slip inversion for the Illapel great earthquake (2015, Mw = 8.3), Geophys. Res. Lett., 43, doi: 10.1002/2015GL067418.
  10. Blaser, L., F. Krüger, M. Ohrnberger and F. Scherbaum (2010), Scaling relations of earthquake source parameter estimates with special focus on subduction environment, Bull. Seismol. Soc. Am., 100, 2914-2926.Google Scholar
  11. Calisto, I., M. Ortega and M. Miller (2015), Observed and modeled tsunami signals compared by using different rupture models of the April 1, 2014, Iquique earthquake, Nat. Hazards, 79, 397-408, doi: 10.1007/s11069-015-1848-x.
  12. Compte, D. and M. Pardo (1991), Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps, Nat. Hazards, 4(1), 23-44, doi: 10.1007/BF00126557.
  13. DeMets, C., R. G. Gordon, D. F. Argus and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191-2194.Google Scholar
  14. Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-2852, doi: 10.1029/JB086iB04p02825.
  15. Ekström, G., M. Nettles and A. M. Dziewonski (2012), The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9, doi: 10.1016/j.pepi.2012.04.002.
  16. Hayes, G. P., L. Rivera and H. Kanamori (2009), Source Inversion of the W-Phase: Real-time Implementation and Extension to Low Magnitudes, Seismol. Res. Lett., 80(5), 817-822, doi: 10.1785/gssrl.80.5.817.
  17. Hayes, G.P., D. J. Wald and R. L. Johnson (2012), Slab1.0: a three-dimensional model of global subduction zone geometries, J. Geophys. Res., 117, 1-15.Google Scholar
  18. Hicks, S. and A. Rietbrock (2015), Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture, Nature Geoscience, 8, 955-960, doi: 10.1038/ngeo2585.
  19. Kamigaichi, O., Tsunami forecasting and warning. Extreme environmental events complexity in forecasting and early warning (ed. Meyers R.A.), Springer, New York (2011), pp. 982-1007, doi: 10.1007/978-1-4419-7695-6_52.
  20. Kanamori, H. and D. Anderson (1975), Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65(5), 1073-1095.Google Scholar
  21. Kanamori, H. (1993), W Phase, Geophys. Res. Lett., 20(16), 1691-1694.Google Scholar
  22. Kanamori, H. and L. Rivera (2008), Source inversion of W phase: speeding up seismic tsunami warning, Geophys. J. Int., 175, 222-238, doi: 10.1111/j.1365-246X.2008.03887.x.
  23. Liu, P. L-F., S-B. Woo and Y-S. Cho (1998), Computer Programs for Tsunami Propagation and Inundation, Cornell University.Google Scholar
  24. Lomnitz, C. (1971), Grandes Terremotos y Tsunamis en Chile Durante el Periodo 1535-1955, Geofisica panamericana, 1(1), 151-178.Google Scholar
  25. Masamura, K., K. Fujima, C. Goto, K. Iida and T. Shigemura (2000), Theoretical solution of long wave considering the structure of bottom boundary layer and examinations on wave decay due to sea bottom friction, Journal of Hydraulic, Coastal and Environmental Engineering, JSCE, No663/II-53, pp. 69-78.Google Scholar
  26. Metois, M., C. Vigny, A. Scquet, A. Delorme, S. Morvan, I. Ortega and C-M. Valderas-Bermejo (2014), GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile, Geophys. J. Int., 196, 644-655.Google Scholar
  27. Moreno, M., M. Rosenau and O. Oncken (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467, 198-202.Google Scholar
  28. Murotani, S., K. Satake and Y. Fujii (2013), Scaling relations of seismic moment, rupture area, average slip and asperity size for M 9 subducting-zone earthquakes, Geophys. Res. Lett., 40, 5070-5074.Google Scholar
  29. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135-1154.Google Scholar
  30. Papazachos, B. C., E. Scordilis, D. Panagiotopoulos, C. Papazachos and G. Karakaisis (2004), Global relations between seismic fault parameters and moment magnitude of earthquakes, Bull. Geol. Soc. Of Greece, 36, 1482-1489.Google Scholar
  31. Pardo, M., D. Compte and T. Monfret (2012), Seismotectonic and stress distribution in the central Chile subduction zone, J. South Am. Earth Sci., 15(1), 11-22.Google Scholar
  32. Schurr, B., G. Asch, S. Hainzl, J. Bedford, A. Hoechner, M. Palo, R. Wang, M. Moreno, M. Bartsch, Y. Zhang, O. Oncken, F. Tilmann, T. Dahm, P. Victor, S. Barrientos and J-P. Vilotte (2014), Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake, Nature, 512, 299-302, doi: 10.1038/nature13681.
  33. Sparkes, R., F. Tilmann, N. Hovius and J. Hillier (2010), Subducted seafloor relief stops rupture in South American great earthquakes: Implications for rupture behaviour in the 2010 Maule, Chile earthquake, Earth Planet Sci. Lett., 298, 89-94.Google Scholar
  34. Stern, C. (2004), Active Andean volcanism: its geologic and tectonic setting, Rev. Geol. Chile, 31, 161-206.Google Scholar
  35. Strasser, F. O., M. C. Arango and J. J. Bommer (2010), Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude, Seismol. Res. Lett., 81, 941-950.Google Scholar
  36. Tang, L., V. V. Titov, C. Moore and Y. Wei (2016), Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for Near-Field Forecast, Pure and Appl. Geophys., 173(2), 369-387, doi: 10.1007/s00024-015-1226-3.
  37. Tassara, A., H. J. Gotze, S. Schmidt and R. Hackney (2006), Three-dimensional density model of the Nazca plate and the Andean continental margin, J. Geophys. Res., 111(B9), doi: 10.1029/2005JB003976.
  38. Tolkova, E. (2010), EOF analysis of a time series with application to tsunami detection, Dyn. Atmos. Oceans, 50/1, 35-54, doi: 10.1016/j.dynatmoce.2009.09.001.
  39. Vigny, C., A. Rudloff, J-C. Ruegg, R. Madariaga, J. Campos and M. Alvarez (2009), Upper plate deformation measured by GPS in the Coquimbo Gap, Chile, Phys. Earth planet. Inter., 175(1-2), 86-95.Google Scholar
  40. Wang, X. (2009), User Manual for COMCOT version 1.7 (first draft), Cornell University.Google Scholar
  41. Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis and F. Wobbe (2013), Generic Mapping Tools: Improved Version Released, EOS Trans. AGU, 94(45), 409-410.Google Scholar
  42. Yamazaki, Y. and K. F. Cheung (2011), Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett., 38, L12605, doi: 10.1029/2011GL047508.
  43. Ye, L., T. Lay, H. Kanamori and K. D. Koper (2016), Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile \(M_{\text{W}}\) 8.3 Earthquake, Pure and Appl. Geophys., 173(2), 321-332, doi: 10.1007/s00024-015-1202-y.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Ignacia Calisto
    • 1
  • Matthew Miller
    • 1
  • Iván Constanzo
    • 1
  1. 1.Geophysics DepartmentUniversity of ConcepcionConcepciónChile

Personalised recommendations