Pure and Applied Geophysics

, Volume 173, Issue 2, pp 369–387 | Cite as

Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for Near-Field Forecast

  • Liujuan Tang
  • Vasily V. Titov
  • Christopher Moore
  • Yong Wei
Article
Part of the following topical collections:
  1. Illapel, Chile, Earthquake on September 16th, 2015

Abstract

The magnitude 8.3 earthquake in central Chile on 16 September 2015 and the resulting tsunami severely affected the region, with 15 deaths (Onemi in Monitoreo por sismo de mayor intensidad. (In Spanish) [Available at: http://www.onemi.cl/alerta/se-declara-alerta-roja-por-sismo-de-mayor-intensidad-y-alarma-de-tsunami/], 2015), over one million evacuated, and flooding in nearby coastal cities. We present our real-time assessment of the 2015 Chile tsunami using the Short-term Inundation Forecasting for Tsunamis system, and post-event analyses with local community models in Chile. We evaluate three real-time tsunami sources, which were inverted at the time that the first quarter-, half-, and full-wave passed the first tsunameter (DART 32402, located approximately 580 km north–northwest of the epicenter), respectively. Measurement comparisons from 26 deep-ocean tsunameters and 38 coastal tide stations show that good model accuracies are achieved for all three sources, particularly for the local sites that recorded the most destructive waves. The study highlights the forecast speed, time and accuracy dependence, and their implications for the local forecast capability. Our analyses suggest that the tsunami's main origination area is about 100–200 km long and 100 km wide, to the north of the earthquake epicenter along the trench and the total estimated tsunami wave energy is 7.9 × 1013 J (with 13 % uncertainty). The study provides important guidelines for the earliest reliable estimate of tsunami energy and local forecasts. They can be obtained with the first quarter-wave of tsunameter recording. These results are also confirmed by a forecast analysis of the 2011 Japan tsunami. Furthermore, we find that the first half-wave tsunameter data are sufficient to accurately forecast the 2015 Chile tsunami, due to the specific orientation between the nearest tsunameter and the source. The study also suggests expanding the operational use of the local community models in real time, and demonstrates the applicability of the model results for “all-clear” evaluations, search and rescue operations, and near-real-time mitigation planning in both near and far fields.

Keywords

The 2015 Chile tsunami tsunami forecast tsunami source tsunami energy near-field forecast numerical modeling 

Notes

Acknowledgments

The authors thank Dr. Donald W. Denbo for obtaining the quarter-wave source during real-time assessment of the 2015 Chile tsunami; the reviewers for their valuable comments that enhanced the paper; NCTR members for discussion and contributions; Sandra Bigley for comments and edits; Stuart A. Weinstein, Hydrographic and Oceanographic Service of the Chilean Navy (SHOA), and National Ocean Service Center for Operational Oceanographic Products and Services (NOS/CO-OPS) for water level data; and National Data Buoy Center (NDBC) for tsunameter data. This research is funded by the NOAA Center for Tsunami Research, PMEL contribution # 4394. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, Contribution No. 2470.

Supplementary material

24_2015_1226_MOESM1_ESM.mov (75.9 mb)
Supplementary material 1 (MOV 77684 kb)
24_2015_1226_MOESM2_ESM.pdf (13.1 mb)
Supplementary material 1 (pdf 13457 kb)

References

  1. Bernard, E., Y. Wei, L. Tang, and V.V. Titov (2014). Impact of Near-Field, Deep-Ocean Tsunami Observations on Forecasting the 7 December 2012 Japanese Tsunami. Pure and Appl. Geophys., 171(12), doi:10.1007/s00024-013-0720-8, 3483–3491.
  2. Bernard, E., and Titov,V.V. (2015). Evolution of tsunami warning systems and products. Philos. Trans. R. Soc. Lond. A, 373(2053), 20140371, doi:10.1098/rsta.2014.0371.
  3. Bonnefoy, P. and Romero, S. (2015). In Chile, Earthquake Forces One Million to Evacuate. The New York Times, http://www.nytimes.com/2015/09/17/world/americas/chile-earthquake.html?_r=0.
  4. Fujii, Y. and Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data, Pure. Appl. Geophys., 170, 1493–1509, doi:10.1007/s00024-012-0524-2.2013.
  5. Fritz, H.M., Petroff, C.M., Catalán, P., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J.C., and Synolakis, C.E. (2011). Field Survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys., 168(11):1989–2010, doi:10.1007/s00024-011-0283-5.
  6. Gica, E., Spillane, M., Titov, V.V., Chamberlin, C. and Newman, J.C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp, Gov. Print. Off., Seattle, Wash.Google Scholar
  7. González, F.I., Bernard, E.N., Meinig, C., Eble, M., Mofjeld, H.O. and Stalin, S. (2005). The NTHMP tsunameter network, Nat. Hazards, 35 (1), 25–39.Google Scholar
  8. Gusiakov, V. K. (1978). Static displacement on the surface of an elastic space, in Ill-Posed Problems of Mathematical Physics and Interpretation of Geophysical Data (in Russian), pp. 23–51, Comput. Cent. of Sov. Acad. of Sci., Novosibirsk, Russia.Google Scholar
  9. Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys. Res., 82 (20), 2981–2987.Google Scholar
  10. Liu, P. L.-F. (2009). Tsunami modeling: Propagation, in The Sea, Tsunamis Ch. 3 15 edited by E. Bernard et al. 295-320, Harvard Univ. Press, Cambridge, MA.Google Scholar
  11. Mei, C.C., M. Tiassnie, and D.Yue (2005). Theory and Applications of Ocean Surface Waves, Part 1: Linear Aspects. World Scientific.Google Scholar
  12. Meinig, C., Stalin, S.E., Nakamura, A.I., González, F. and Milburn, H.G. (2005). Technology Developments in Real-Time Tsunami Measuring, Monitoring and Forecasting, In Oceans 2005 MTS/IEEE, 19–23 September 2005, Washington, D.C.Google Scholar
  13. Milburn, H.B., A.I. Nakamura, and F.I. Gonzalez (1996). Real-time tsunami reporting from the deep ocean. Proceedings of the Oceans 96 MTS/IEEE Conference, 23–26 September 1996, Fort Lauderdale, FL, 390–394.Google Scholar
  14. Onemi, (2015). Monitoreo por sismo de mayor intensidad. (In Spanish) [Available at: http://www.onemi.cl/alerta/se-declara-alerta-roja-por-sismo-de-mayor-intensidad-y-alarma-de-tsunami/]
  15. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space, Bull. Seism. Soc. Am., 75, 1135–1154.Google Scholar
  16. Paros, J., Bernard, E., Delaney, J., Meinig, C., Spillane, M., Migliacio, P., Tang, L., Chadwick, W., Schaad, T. and Stalin, S. (2011). Breakthrough underwater technology holds promise for improved local tsunami warnings, In Symposium for Underwater Technology 11/IEEE.Google Scholar
  17. Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L. and Titov, V.V. (2011). Extraction of tsunami source coefficients via inversion of DART ® buoy data, Nat. Hazards, 58(1), doi: 10.1007/s11069-010-9688-1, 567–590.
  18. Percival, D.B., Denbo, D.W., Eblé, M.C., Gica, E., Huang, P.Y., Mofjeld, H.O., Spillane, M.C., Titov, V.V. and Tolkova, E.I. (2015). Detiding DART ® buoy data for real-time extraction of source coefficients for operational tsunami forecasting. Published online, Pure Appl. Geophys., June 2015, Vol. 172, Issue 6, pp 1653–1678, doi:10.1007/s00024-014-0962-0.
  19. Spillane, M.C., Gica, E., Titov, V.V. and Mofjeld, H.O. (2008). Tsunameter network design for the US DART® arrays in the Pacific and Atlantic Oceans, Tech. Memo, OAR PMEL-143, 165 pp., Gov. Print. Off., Seattle, Wash.Google Scholar
  20. Synolakis, C., Bernard, E.N., Titov, V.V., Kanoglu, U. and Gonzalez F. (2008). Validation and verification of tsunami numerical models, Pure Appl. Geophys., 165(11–12), 2197–2228, doi:10.1007/s00024-004-0427-y.
  21. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C.D., Gica, E. and Newman, J. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res., 113, C12015, doi: 10.1029/2008JC004922.
  22. Tang, L., Titov, V.V. and Chamberlin, C.D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 114, C12025, doi:10.1029/2009JC005476.
  23. Tang, L., Titov, V.V., Bernard, E.N., Wei, Y., Chamberlin, C.D, Newman, J.C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M.C., Wright, L.M. and Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements, J. Geophys. Res., 117, C08008, doi:10.1029/2011JC007635.
  24. The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2011). Post-tsunami field survey of the 2011 Tohoku earthquake tsunami, XXV IUGG Assembly, Melbourne, Australia.Google Scholar
  25. Titov, V.V., U. Kanoglu and C.S. Synolakis, (2015), Development of a Model for Real-time Tsunami Forecasting: from VTCS to MOST, Journal of Waterway, Port, Coastal and Ocean Engineering, accepted.Google Scholar
  26. Titov, V.V. and Synolakis, C.S. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal and Ocean Engineering 124(4), 157–171.Google Scholar
  27. Titov, V.V. and Gonzalez, F.I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Tech. Memo. ERL PMEL-112, Pacific Marine Environmental Laboratory, Seattle, WA.Google Scholar
  28. Titov, V. V., Mofjeld, H. O., Gonzalez, F. I. and Newman, J.C. (1999). Offshore forecasting of Alaska-Aleutian subduction zone tsunamis in Hawaii, Tech. Memo. ERL PMEL-114, 22 pp., Gov. Print. Off., Seattle, Wash.Google Scholar
  29. Titov, V.V., Rabinovich, A.B., Mofjeld, H.O., Thomson, R.E. and González, F.I. (2005). The global reach of the 26 December 2004 Sumatra Tsunami. Science, 309(5743), 2045–2048.Google Scholar
  30. Titov, V.V. (2009). Tsunami forecasting, in The Sea, Tsunamis Ch. 12 15, edited by E.N. Bernard, Harvard Univ. Press, Cambridge, MA.Google Scholar
  31. Titov, V.V, Moore, C.W., Greenslade, D.J.M., Pattiaratchi, C., Badal, R., Synolakis, C.E. and Kânoğlu, U. (2011). A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT), Pure and Appl. Geophys. doi: 10.1007/s00024-011-0292-4.
  32. Titov V.V. and Tang, L. (2011). Estimating tsunami magnitude in real time using tsunameter data, the XXV IUGG General Assembly, Melbourne Australia, 28 June–7 July, 2011.Google Scholar
  33. Titov V.V. and Tang, L. (2015). Tsunami Magnitude as Measure of Potential Impact, IUGG-4515, the 26th IUGG General Assembly, Prague, Czech Republic, June 22–July 2, 2015.Google Scholar
  34. Wei, Y., Bernard, E.N., Tang, L., Weiss, R., Titov, V.V., Moore, C., Spillane, M., Hopkins, M. and Kânoğlu, U. (2008), Real-time experimental forecast of the Peruvian tsunami of August 2007 for US coastlines, Geophys. Res. Lett., 35, L04609, doi: 10.1029/2007GL032250.
  35. Wei, Y., Chamberlin, C.D., Titov, V.V. and Tang, L. (2013). Modeling of the 2011 Japan tsunami: lessons for near-field tsunami forecast, Pure Appl. Geophys., 170(6–8), doi: 10.1007/s00024-012-0519-z, 1309–1331.
  36. Ye, L., Lay, T., Kanamori, H. and Koper K.D. (2015). Rapidly estimated seismic source parameters for the 16 september 2015 Illapel, Chile Mw 8.3 Earthquake, Pure Appl. Geophys., doi:10. 1007/s00024-015-1202-yGoogle Scholar

Copyright information

© Springer (outside the USA) 2016

Authors and Affiliations

  • Liujuan Tang
    • 1
    • 2
  • Vasily V. Titov
    • 2
  • Christopher Moore
    • 2
  • Yong Wei
    • 1
    • 2
  1. 1.Joint Institute for the Study of the Atmosphere and Ocean (JISAO)University of WashingtonSeattleUSA
  2. 2.NOAA Center for Tsunami Research, Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleUSA

Personalised recommendations