Pure and Applied Geophysics

, Volume 173, Issue 5, pp 1559–1574 | Cite as

Modeling of Kashmir Aftershock Decay Based on Static Coulomb Stress Changes and Laboratory-Derived Rate-and-State Dependent Friction Law

  • F. Javed
  • S. Hainzl
  • A. Aoudia
  • M. Qaisar


We model the spatial and temporal evolution of October 8, 2005 Kashmir earthquake’s aftershock activity using the rate-and-state dependent friction model incorporating uncertainties in computed coseismic stress perturbations. We estimated the best possible value for frictional resistance “ n”, background seismicity rate “r” and coefficient of stress variation “CV” using maximum log-likelihood method. For the whole Kashmir earthquake sequence, we measure a frictional resistance n ~ 0.0185 MPa, r ~ 20 M3.7+ events/year and CV = 0.94 ± 0.01. The spatial and temporal forecasted seismicity rate of modeled aftershocks fits well with the spatial and temporal distribution of observed aftershocks that occurred in the regions with positive static stress changes as well as in the apparent stress shadow region. To quantify the effect of secondary aftershock triggering, we have re-run the estimations for 100 stochastically declustered catalogs showing that the effect of aftershock-induced secondary stress changes is obviously minor compared to the overall uncertainties, and that the stress variability related to uncertain slip model inversions and receiver mechanisms remains the major factor to provide a reasonable data fit.


Seismology early warning system Coulomb failure stresses and fault interaction model 



This work is partly funded by the Generali Group. Comments by Tom Parsons and one anonymous reviewer improved the manuscript.


  1. Avouac, J. P., Ayoub, F., Leprince, S., Konca, O. and Helmberger, D. V. (2006) The 2005, Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis, Earth Planet. Sci. Lett., 249, 514–528, doi: 10.1016/j.epsl.2006.06.025.
  2. Catalli, F., Cocco, M., Console, R. and Chiaraluce, L. (2008), Modeling seismicity rate changes during the 1997 Umbria-Marche sequence (central Italy) through rate and state dependent model, J. Geophys. Res., 113, B11301, doi: 10.1029/2007JB005356.
  3. Cattania, C., S. Hainzl, L. Wang, F. Roth, and B. Enescu (2014), Propagation of Coulomb stress uncertainties in physics-based aftershock models, J. Geophys. Res. Solid Earth, 119, 7846–7864. doi: 10.1002/2014JB011183.
  4. Cattania, C., S. Hainzl, L. Wang, B. Enescu, and F. Roth (2015), Aftershock triggering by postseismic stresses: a study based on Coulomb rate-and-state models, J. Geophys. Res. Solid Earth, 120, 2388–2407, doi: 10.1002/2014JB011500.
  5. Cocco, M., Hainzl, S., Catalli, F., Enescu, B., Lombardi, A. M. and Woessner, J. (2010), Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response, J. Geophys. Res., 115, B05307, doi: 10.1029/2009JB006838.
  6. Daley, D. J. and Vere-Jones, D. (2003), An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods, 2nd ed., Springer, New York.Google Scholar
  7. Dieterich, J. H. (1992), Earthquake nucleation on faults with rate-and State-dependent friction, Tectonophysics, 211, 115–134.CrossRefGoogle Scholar
  8. Dieterich, J. H. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99 (B2), 2601–2618.CrossRefGoogle Scholar
  9. Dieterich, J. H., Cayol, V. and Okubo, P. (2000), The use of earthquake rate changes as a stress meter at Kilauea volcano, Nature, 408, 457–460.CrossRefGoogle Scholar
  10. Felzer, K. R., Abercrombie, R. E. and Ekstrom, G. (2003), Secondary aftershocks and their importance for aftershock forecasting, Bull. Seismol. Soc. Am., 93(4), 1433–1448.CrossRefGoogle Scholar
  11. Gardner, J. K., and Knopoff, L. (1974), Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seismol. Soc. Am., 64(5), 1363–1367.Google Scholar
  12. Hainzl, S., Enescu, B., Cocco, M., Woessner, J., Catalli, F., Wang, R. and Roth, F. (2009), Aftershock modeling based on uncertain stress calculations, J. Geophys. Res., 114, B05309, doi:  10.1029/2008JB006011, 2009.
  13. Hainzl, S., Steacy, S. and Marsan, D. (2010a), Seismicity models based on Coulomb stress calculations, Community Online Resource for Statistical Seismicity Analysis, doi: 10.5078/corssa-32035809.
  14. Hainzl, S., Zöller, G. and Wang, R. (2010b), Impact of the receiver fault distribution on aftershock activity, J. Geophys. Res., 115, B05315, doi: 10.1029/2008JB006224.
  15. Hardebeck, J. L. and Hauksson, E. (2001), Crustal stress field in southern California and its implications for fault mechanisms, J. Geophys. Res., 106 (B10), 21, 859–821, 882.Google Scholar
  16. Harris, R. A. (1998), Introduction to special section: stress triggers, stress shadows, and implication for seismic hazard. J. Geophys. Res., 103, 24 347-24, 358.Google Scholar
  17. Harris, R. A. and Simpson, R. W. (1992), Changes in static stress on southern California faults after the 1992 landers earthquake. Nature, 360, 251–254.CrossRefGoogle Scholar
  18. Helmstetter, A. and Shaw, B. E. (2006), Relation between stress heterogeneity and aftershock rate in the rate-and-state model, J. Geophys. Res., 111, B07304, doi: 10.1029/2005JB004077.
  19. Jouanne, F., Awan, A., Madji, A., Pêcher, A., Latif, M., Kausar, A., Mugnier, J. L., Khan, I. and Khan, N. A. (2011), Postseismic deformation in Pakistan after the 8th October 2005 earthquake: Evidence of afterslip along a flat north of the Balakot-Bagh thrust, J. Geophys. Res., 116, B07401, 22 pp. doi: 10.1029/2010JB007903.
  20. Kagan, Y. Y. (2004), Short-term properties of earthquake catalogs and models of earthquake source, Bull. Seismol. Soc. Am., 94 (4), 1207–1228.CrossRefGoogle Scholar
  21. King, G. C. P., Stein, R. S. and Lin, J. (1992), Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake. Science, 258, 1328–1332.CrossRefGoogle Scholar
  22. Mallman, E. P. and Zoback, M. D. (2007), Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan, J. Geophys. Res., 112, B03304, doi: 10.1029/2005JB004076.
  23. Marsan, D. (2006), Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model, J. Geophys. Res., 111, B06305, doi: 10.1029/2005JB004060.
  24. Ogata, Y. (1988), Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27.CrossRefGoogle Scholar
  25. Ogata, Y. (1992), Detection of precursory relative quiescence before great earthquakes through a statistical model, J. Geophys. Res., 97, 19845–19871.CrossRefGoogle Scholar
  26. Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Stat. Math., 50, 379–402.CrossRefGoogle Scholar
  27. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half space, Bull. seism. Soc. Am., 82, 1018–1040.Google Scholar
  28. Parsons, T., Ogata, Y., Zhuang, J. and Geist, E. L. (2012), Evaluation of static stress change forecasting with prospective and blind tests, Geophys. J. Int., 188, 1425–1440, doi:  10.1111/j.1365-246X.2011.05343.x.
  29. Parsons, T., Yeats, R. S., Yagi, Y. and Hussain, A. (2006), Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake, Geophys. Res. Lett., 33, L06304, doi: 10.1029/2005GL025429.
  30. Pathier, E., Fielding, E. J., Wright, T. J., Walker, R., Parsons, B. E. and Hensley, S. (2006), Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery, Geophys. Res. Lett., 33, L20310, doi: 10.1029/2006GL027193.
  31. Reasenberg, P. A. and Simpson, R. W. (1992), Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255:1687–1690.CrossRefGoogle Scholar
  32. Rice, J. R. and Cleary, M. P. (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, 14:227–241.CrossRefGoogle Scholar
  33. Segou, M., T. Parsons and W. Ellsworth (2013), Comparative evaluation of combined physics based and statistical forecast models, Journal of Geophysical Research, v. 118, p. 6219–6240, doi: 10.1002/2013JB010313.
  34. Stein, R. S. (1999), The role of stress transfer in earthquake occurrence, Nature, 402(6762), 605–609.CrossRefGoogle Scholar
  35. Stein R. S., Lin, J. and King, G. C. P. (1981), Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84:935–953.Google Scholar
  36. Stein, R. S. and Lisowski, M. (1983), The 1979 Homestead valley earthquake sequence California: control of aftershocks and postseismic deformation. J. Geophys. Res., 88:6477–6490.CrossRefGoogle Scholar
  37. Stiphout, T., Zhuang, T. and Marsan, J. D. (2010), Seismicity Declustering, Community Online Resource for Statistical Seismicity Analysis, doi: 10.3929/ethz-a-xxxxxxxxx.Google Scholar
  38. Toda, S., Stein, R. S., Reasenberg, P. A., Dieterich, J. H. and Yoshida, A. (1998), Stress transferred by the 1995, Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities, J. Geophys. Res., 103 (B10), 24,543–24, 565.CrossRefGoogle Scholar
  39. Toda, S., and Stein, R. S. (2003), Toggling of seismicity by the 1997 Kagoshima earthquake couplet: a demonstration of time dependent stress transfers J. Geophys. Res., 108(B12), 2567, doi: 10.1029/2003JB002527.
  40. Toda, S., Stein, R. S., Richards-Dinger, K. and Bozkurt, S. B. (2005), Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer, J. Geophys. Res., 110(B5), B05S16, doi: 10.1029/2004JB003415.
  41. Utsu, T. (1961), A statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 521605.Google Scholar
  42. Woessner, J., S. Hainzl, W. Marzocchi, M. J. Werner, A. M. Lombardi, F. Catalli, B. Enescu, M. Cocco, M. C. Gerstenberger, and S. Wiemer (2011), A retrospective comparative forecast test on the 1992 Landers sequence, J. Geophys. Res., 116, B05305, doi: 10.1029/2010JB007846.
  43. Woessner, J., Jonsson, S., Sudhaus, H. and Bachmann, C. (2012), Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models, J. Geophys. Res., 117, B07303, doi: 10.1029/2011JB009121.
  44. Zhuang, J., Ogata, Y. and Vere‐Jones, D. (2002), Stochastic declustering of time earthquake occurrences, J. Am. Stat. Assoc., 97, 369–380.CrossRefGoogle Scholar
  45. Zhuang, J., Ogata, Y. and Vere‐Jones, D. (2004), Analyzing earthquake clustering features by using stochastic reconstruction, J. Geophys. Res., 109, B05301, doi: 10.1029/2003JB002879.

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Abdus Salam International Center for Theoretical Physics (ICTP)TriesteItaly
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.University of TriesteTriesteItaly
  4. 4.Center for Earthquake Studies (CES)National Center for Physics (NCP)IslamabadPakistan

Personalised recommendations