Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 5, pp 1517–1537 | Cite as

Violations of Gutenberg–Richter Relation in Anthropogenic Seismicity

  • Pawel Urban
  • Stanislaw LasockiEmail author
  • Patrick Blascheck
  • Aderson Farias do Nascimento
  • Nguyen Van Giang
  • Grzegorz Kwiatek
Article

Abstract

Anthropogenic seismicity (AS) is the undesired dynamic rockmass response to technological processes. AS environments are shallow hence their heterogeneities have important impact on AS. Moreover, AS is controlled by complex and changeable technological factors. This complicated origin of AS explains why models used in tectonic seismicity may be not suitable for AS. We study here four cases of AS, testing statistically whether the magnitudes follow the Gutenberg–Richter relation or not. The considered cases include the data from Mponeng gold mine in South Africa, the data observed during stimulation of geothermal well Basel 1 in Switzerland, the data from Acu water reservoir region in Brazil and the data from Song Tranh 2 hydropower plant region in Vietnam. The cases differ in inducing technologies, in the duration of periods in which they were recorded, and in the ranges of magnitudes. In all four cases the observed frequency–magnitude distributions statistically significantly differ from the Gutenberg–Richter relation. Although in all cases the Gutenberg–Richter b value changed in time, this factor turns out to be not responsible for the discovered deviations from the Gutenberg–Richter-born exponential distribution model. Though the deviations from Gutenberg–Richter law are not big, they substantially diminish the accuracy of assessment of seismic hazard parameters. It is demonstrated that the use of non-parametric kernel estimators of magnitude distribution functions improves significantly the accuracy of hazard estimates and, therefore, these estimators are recommended to be used in probabilistic analyses of seismic hazard caused by AS.

Keywords

Magnitude scaling Gutenberg–Richter relation breakdown non-parametric estimation anthropogenic seismicity 

Notes

Acknowledgments

This work was done in the framework of the project IS-EPOS: Digital Research Space of Induced Seismicity for EPOS Purposes (POIG.02.03.00-14-090/13-00), funded by the National Centre for Research and Development in the Operational Program Innovative Economy in the years 2013–2015. The work was also partially supported within statutory activities No 3841/E-41/S/2015 of the Ministry of Science and Higher Education of Poland. JAGUARS seismic data used in this study were provided by GFZ German Research Centre for Geosciences, Department 3: Geodynamics and Geomaterials, Section 3.2: Geomechanics and Rheology, Telegrafenberg, D14473 Potsdam, Germany and they are available on request. The Authors want to thank M. Nakatani, J. Philipp, Y. Yabe, H. Ogasawara, and co-workers from JAGUARS group for their work in installing and maintaining the JAGUARS network. AFdN thanks CNPq (National Counsel of Technological and Scientific Development—Brazil) for his fellowship.

References

  1. Aki, K. (1965), Maximum Likelihood Estimate of b in the Formula log N = a - b M and its Confidence Limits, Bull. Earthq. Res. Inst. Tokyo Univ. 43, 237-239.Google Scholar
  2. Bender, B. (1983), Maximum Likelihood Estimation of b Values for Magnitude Grouped Data, Bull. Seismol. Soc. Am. 73, 831-851.Google Scholar
  3. Bird, P., and Kagan, Y. (2004), Plate-tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, Beta-value, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in 7 Tectonic Settings, Bull. Seismol. Soc. Am. 94, 2380–2399, doi: 10.1785/0120030107.CrossRefGoogle Scholar
  4. Bowman, A. W., Hall, P., and Titterington, D. M. (1984), Cross-validation in non-parametric estimation of probabilities and probability densities, Biom. 71, 341–351.Google Scholar
  5. Convertito, V., Maercklin, N., Sharma, N., and Zollo, A. (2012), From Induced Seismicity to Direct Time-dependent Seismic Hazard, Bull. Seismol. Soc. Am. 102, 2563–2573, doi: 10.1785/0120120036.CrossRefGoogle Scholar
  6. Cooke, P. (1979), Statistical Inference for Bounds of Random Variables, Biometrika 66, 367–374.CrossRefGoogle Scholar
  7. Cosentino, P., Ficarra, V., and Luzio, D. (1977), Truncated Exponential Frequency-magnitude Relationship in Earthquake Statistics, Bull. Seismol. Soc. Am. 67, 1615-1623.Google Scholar
  8. Davies, R., Foulger, G., Bindleya, A., and Styles, P. (2013), Induced Seismicity and Hydraulic Fracturing for the Recovery of Hydrocarbons, Marine and Petroleum Geology 45, 171–185, doi: 10.1016/j.marpetgeo.2013.03.016.CrossRefGoogle Scholar
  9. do Nascimento, A.F., Cowie, P.A., Lunn, R.J., and Pearce, R.G. (2004), Spatio-temporal Evolution of Induced Seismicity at Açu Reservoir, NE Brazil, Geophys. J. Int. 158, 1041–1052, doi: 10.1111/j.1365-246X.2004.02351.x.
  10. Eaton, D.W., and Maghsoudi, S. (2015), 2b… or not 2b? Interpreting Magnitude Distributions From Microseismic Catalogs, First Break 33.Google Scholar
  11. Eaton, D.W., Davidsen, J., Pedersen, P.K., and Boroumand, N. (2014), Breakdown of the Gutenberg-Richter Relation for Microearthquakes Induced by Hydraulic Fracturing: Influence of Stratabound Fractures, Geophysical Prospecting 62, 806-818, doi: 10.1111/1365-2478.12128.CrossRefGoogle Scholar
  12. El Hariri, M., Abercrombie, R.E., Rowe, C.A., and do Nascimento, A.F. (2010), The Role of Fluids in Triggering Earthquakes: Observations From Reservoir Induced Seismicity in Brazil, Geophys. J. Int. 181, 1566–1574, doi: 10.1111/j.1365-246X.2010.04554.x.
  13. Ferreira, J.M., Oliveira, R.T., Assumpção, M., Moreira, J. A.M., Pearce, R.G., and Takeya, M.K. (1995), Correlation of Seismicity and Water Level—An Example From Northeastern Brazil, Bull. Seismol. Soc. Am. 85, 1483–1489.Google Scholar
  14. Feustel, A.J., Temporal-spatial b-values and observed relationships to structurally controlled ground falls in an open-stope mine, In Rockbursts and Seismicity in Mines (eds. Gibowicz, S.J. and Lasocki, S.) (Balkema, Rotterdam 1997) pp. 45-47.Google Scholar
  15. Frohlich, C., and Davis, S. (1993), Teleseismic b-Values: Or, Much Ado About 1.0, J. Geophys. Res. 98, 631 – 644, doi: 10.1029/92JB01891.CrossRefGoogle Scholar
  16. Gibowicz, S.J. (1979), Space and Time Variations of the Frequency-Magnitude Relation for Mining Tremors in the Szombierki Coal Mine in Upper Silesia, Poland, Acta Geophys. Pol. 27, 39-50.Google Scholar
  17. Gibowicz, S.J. (1990), The mechanism of seismic events induced by mining. In Rockbursts and Seismicity in Mines (ed. Fairhurst, C.) (Balkema, Rotterdam 1990), pp. 3-27.Google Scholar
  18. Godano, C., and Pingue, F. (2000), Is the Seismic Moment-Frequency Relation Universal?, Geophys. J. Int. 142, 193– 198, doi: 10.1046/j.1365-246x.2000.00149.x.CrossRefGoogle Scholar
  19. Grob, M., and van der Baan, M. (2011a), Statistical Analysis of Microseismic Event Locations and Magnitudes, and Their Geomechanical Implications, SEG Expanded Abstracts 30: 1570–1575.Google Scholar
  20. Grob, M., and van der Baan, M. (2011b), Inferring In-Situ Stress Changes by Statistical Analysis of Microseismic Event Characteristics, The Leading Edge 30, 1296–1301. doi: 10.1029/2010GL043066.CrossRefGoogle Scholar
  21. Gutenberg, B., and Richter, C.F. (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.Google Scholar
  22. Haering, M.O., Schanz, U., Ladner, F., and Dyer, B.C. (2008), Characterization of the Basel 1 Enhanced Geothermal System. Geothermics, 37, 469–495, doi: 10.1016/j.geothermics.2008.06.002.CrossRefGoogle Scholar
  23. Häge M., Blascheck, P., and Joswig, M. (2012), EGS Hydraulic Stimulation Monitoring by Surface Arrays—Location Accuracy and Completeness Magnitude: The Basel Deep Heat Mining Project Case Study, J Seismol. 17, 51–61, doi: 10.1007/s10950-012-9312-9.CrossRefGoogle Scholar
  24. Holub, K. (1995), Analysis of b-Value in the Frequency-energy Distributions. Publs. Inst. Geophys. Polish Acad. Sc. M-19(281), 153-161.Google Scholar
  25. Johnston, J.C., and Einstein, H.H., A survey of mining associated rockbursts, In Rockbursts and Seismicity in Mines (ed. Fairhurst, C.) (Balkema, Rotterdam 1990), pp. 121-128.Google Scholar
  26. Kagan, Y.Y. (1997), Seismic Moment-frequency Relation for Shallow Earthquakes: Regional Comparison, J. Geophys. Res. 102, 2835–2852,doi: 10.1029/96JB03386.CrossRefGoogle Scholar
  27. Kagan, Y. (1999), Universality of the Seismic Moment-frequency Relation, Pure Appl. Geophys. 155, 537–573, doi: 10.1007/s000240050277.Google Scholar
  28. Kijko, A., and Graham, G. (1998), Parametric-Historic Procedure for Probabilistic Seismic Hazard Analysis. Part I: Estimation of Maximum Regional Magnitude Mmax. Pure Appl. Geophys. 152, 413–442.CrossRefGoogle Scholar
  29. Kijko, A., Drzęźla, B., and Stankiewicz, T. (1987), Bimodal Character of the Distribution of Extreme Seismic Events in Polish Mines, Acta Geophys. Pol. 35, 157-166.Google Scholar
  30. Kijko, A., Funk, C. W., and Brink, A. v. Z., Identification of anomalous patterns in time-dependent mine seismicity. In Rockbursts and Seismicity in Mines (ed Young, R.P), (Balkema, Rotterdam, 1993), pp. 205-210.Google Scholar
  31. Kijko, A., Lasocki, S., and Graham, G. (2001), Nonparametric Seismic Hazard Analysis in Mines. Pure Appl. Geophys. 158, 1655-1676.CrossRefGoogle Scholar
  32. Kozłowska, M., Orlecka-Sikora, B., Kwiatek, G., Boettcher, M.S., and Dresen, G. (2015), Nanoseismicity and Picoseismicity Rate Changes From Static Stress Triggering Caused by a M w 2.2 Earthquake in Mponeng Gold Mine, South Africa, J. Geophys. Res. 120, doi: 10.1002/2014JB011410.
  33. Kwiatek, G., Plenkers, K., Nakatani, M., Yabe, Y., Dresen, G., and JAGUARS-Group (2010), Frequency-Magnitude Characteristics Down to Magnitude -4.4 for Induced Seismicity Recorded at Mponeng Gold Mine, South Africa, Bull. Seismol. Soc. Am. 100, 1165–1173, doi:  10.1785/0120090277.
  34. Kwiatek, G., Plenkers, K., Dresen, G., and JAGUARS Research Group (2011), Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations, Bull. Seismol. Soc. Am. 101, 2592–2608, doi:  10.1785/0120110094.
  35. Lasocki S. Some estimates of rockburst danger in underground coal mines from energy distribution of M.A. events, In Proc. 4th Conf. Acoustic Emission/Microseismic Activity in Geologic Structures and Materials (Hardy H.R.Jr. ed), (Trans Tech Publications, Clausthal 1989), pp 617-633.Google Scholar
  36. Lasocki, S. (1993a), Statistical Prediction of Strong Mining Tremors, Acta Geophys. Pol., 41, 197-234.Google Scholar
  37. Lasocki S., Statistical Short-term Prediction in Mining Induced Seismicity, In Rockbursts and Seismicity in Mines (ed Young, R.P), (Balkema, Rotterdam, 1993), pp. 211-216.Google Scholar
  38. Lasocki, S., Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation, In Rockbursts and Seismicity in Mines: Dynamic rock mass response to mining (van Aswegen, G., Durrheim, R.J., Ortlepp, W.D. eds.) (SAIMM S27, Johannesburg, 2001), pp. 543-550.Google Scholar
  39. Lasocki, S., and Orlecka-Sikora, B. (2008), Seismic Hazard Assessment Under Complex Source Size Distribution of Mining-Induced Seismicity, Tectonophysics 456, 28-37, doi: 10.1016/j.tecto.2006.08.013.CrossRefGoogle Scholar
  40. Lasocki, S., and Papadimitriou, E.E. (2006), Magnitude Distribution Complexity Revealed in Seismicity From Greece, J. Geophys. Res. 111, B11309, doi: 10.1029/2005JB003794.CrossRefGoogle Scholar
  41. Lasocki, S., and Urban, P. (2011), Bias, Variance and Computational Properties of Kijko’s Estimators of the Upper Limit of Magnitude Distribution, Mmax. Acta Geophys 59, 659-673, doi: 10.2478/s11600-010-0049-y.CrossRefGoogle Scholar
  42. Lasocki, S., Kijko, A., and Graham, G. Model-free seismic hazard estimation. In Proc. Int. Conf. Earthquake Hazard and Risk in the Mediterranean Region, EHRMR’99 (Gokcekus H. ed.) (Educational Foundation of Near East University, Lefkosa, T. R. N. Cyprus, 2000), pp. 503-508.Google Scholar
  43. Leonard, T., Papasouliotis, O., and Main, I.G. (2001), A Poisson Model for Identifying Characteristic Size Effects in Frequency Data: Application to Frequency-Size Distributions for Global Earthquakes, “Starquakes,” and Fault Lengths, J. Geophys. Res. 106, 13473–13484, doi: 10.1029/2000JB900429.CrossRefGoogle Scholar
  44. Maghsoudi, S., Cesca, S., Hainzl, S., Kaiser, D., Becker, D., and Dahm, T. (2013), Improving the Estimation of Detection Probability and Magnitude of Completeness in Strongly Heterogeneous Media, an Application to Acoustic Emission (AE), Geophys. J. Int. 193, 1556–1569, doi: 10.1093/gji/ggt049.CrossRefGoogle Scholar
  45. Maghsoudi, S., Hainzl, S., Cesca, S., Dahm, T., and Kaiser, D. (2014), Identification and Characterization of Growing Large-Scale En-Echelon Fractures in a Salt Mine, Geophys. J. Int. 196, 1092-1105, doi: 10.1093/gji/ggt443.CrossRefGoogle Scholar
  46. Mallika, K., Gupta, H., Shashidar, D., Purnachandra Rao, N., Yadav, A., Rohilla, S., Satyanarayana, H.V.S., and Srinagesh, D. (2012), Temporal Variation of b Value Associated With the M4 Earthquakes in the Reservoir-Triggered Seismic Environment of the Koyna–Warna Region, Western India, J Seismol 17, 189-195, doi: 10.1007/s10950-012-9318-3.Google Scholar
  47. Maxwell, S.C., Jones, M., Parker, R., Miong, S., Leaney, S., Dorval, D., DAmico, D., Logel, J., Anderson, E., and Hammermaster, K., Fault activation during hydraulic fracturing. In SEG Houston, International Exposition and Annual Meeting (2009), pp. 1552–1556.Google Scholar
  48. McGarr, A. (2000), Energy budgets of mining-induced earthquakes and their interactions with nearby stopes, Int J Rock Mech Min Sci 37, 437-443, doi: 10.1016/S1365-1609(99)00118-5.CrossRefGoogle Scholar
  49. Mogi, K. (1967), Regional Variation in Magnitude-Frequency Relation of Earthquake, Bull. Earthq. Res. Inst. 45, 313-325.Google Scholar
  50. Orlecka-Sikora, B., and Lasocki, S. Nonparametric characterization of mining induced seismic sources, In Rockbursts and Seismicity in Mines: Controlling Seismic Risk (Potvin, Y., and Hudyma, M., eds.), (Australian Centre for Geomechanics, Nedlands 2005), pp. 555-560.Google Scholar
  51. Page, M. T., Alderson, D., and Doyle, J. (2011), The Magnitude Distribution of Earthquakes Near Southern California Faults, J. Geophys. Res. 116, B12309, doi: 10.1029/2010JB007933.CrossRefGoogle Scholar
  52. Pearson, E. S., and Hartley, H. O., eds, Biometrika Tables for Statisticians, Vol. 2, (Cambridge University Press, Cambridge 1972).Google Scholar
  53. Qin Changyuan (2005) Nonlinear Analysis of the Frequency-Magnitude Relationship in the Western Circum-Pacific Region, Pure Appl. Geophys. 162, 91–107, doi: 10.1007/s00024-004-2581-7.Google Scholar
  54. Schorlemmer, D., Wiemer, S., and Wyss, M. (2004), Earthquake Statistics at Parkfield: 1. Stationarity of b Values, J. Geophys. Res. 109, B12307, doi: 10.1029/2004JB003234.CrossRefGoogle Scholar
  55. Schorlemmer, D., Wiemer, S., and Wyss, M. (2005), Variations in Earthquake-Size Distribution Across Different Stress Regimes, Nature 437, 539–542, doi: 10.1038/nature04094.CrossRefGoogle Scholar
  56. Schwartz, D. P., and Coppersmith, K. J. (1984), Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89, 5681–5698, doi: 10.1029/JB089iB07p05681.CrossRefGoogle Scholar
  57. Silverman, B. W., Density Estimation for Statistics and Data Analysis, (Chapman Hall, London 1986).CrossRefGoogle Scholar
  58. Simpson, D.W., Leith, W.S., and Scholz, C.H. (1988), Two Types of Reservoir-induced Seismicity, Bull. Seismol. Soc. Am. 78, 2025-2040.Google Scholar
  59. Stewart, R. D., and Spottiswoode, S.M., A technique for determining the seismic risk in deep-level mining, In Rockbursts and Seismicity in Mines (ed Young, R.P), (Balkema, Rotterdam, 1993), pp. 123-128.Google Scholar
  60. Stock, C., and Smith E. (2002a), Adaptive Kernel Estimation and Continuous Probability Representation of Historical Earthquake Catalogs, Bull. Seismol. Soc. Am. 92, 901-912.Google Scholar
  61. Stock, C., and Smith E. (2002b), Comparison between Seismicity Models Generated by Different Kernel Estimations, Bull. Seismol. Soc. Am. 92, 913-922.CrossRefGoogle Scholar
  62. Trifu, C.-I., Shumila, V., and Urbancic, T.I., Space-time analysis of microseismicity and its potential for estimating seismic hazard in mines, In Rockbursts and Seismicity in Mines (eds. Gibowicz, S.J. and Lasocki, S.) (Balkema, Rotterdam 1997) pp. 295-298.Google Scholar
  63. Tsapanos, T. (1990), b-value of Two Tectonic Parts in the Circum-Pacific Belt, Pure Appl. Geophys. 143, 229-242, doi: 10.1007/BF00876999.Google Scholar
  64. Tsukakoshi Y. (2010), Mapping the η-Value and the Test Results on the Hyper-Gutenberg–Richter Relation for Microseismicity Around the Japanese Islands, Bull. Seismol. Soc. Am. 100, 876–881, doi: 10.1785/0120080307.CrossRefGoogle Scholar
  65. Utsu, T. (1965), A Method for Determination of the Value of b in Formula log N = a - b M Showing the Magnitude-frequency Relation for Earthquakes, Geophys. Bull. Hokkaido Univ. 13, 99-103.Google Scholar
  66. Utsu, T. (1999), Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches, Pure Appl. Geophys. 155, 509–535, doi: 10.1007/s00024005027.Google Scholar
  67. Volant, P., Grasso, J. R., Chatelain, J. L., and Frogneux M. (1992), b-Value, Aseismic Deformation and Brittle Failure Within an Isolated Geological Object: Evidences From a Dome Structure Loaded by Fluid Extraction, Geophys. Res. Lett. 19, 1149–1152.CrossRefGoogle Scholar
  68. Wech, A., Kenneth, W., Creager, C., Houston, H., and Vidale, J. (2010), An Earthquake-Like Magnitude–Frequency Distribution of Slow Slip in Northern Cascadia, Geophys. Res. Lett. 37, L22310, doi: 10.1029/2010GL044881.CrossRefGoogle Scholar
  69. Wesnousky, S.G. (1999), Crustal Deformation Processes and the Stability of the Gutenberg–Richter Relationship, Bull. Seismol. Soc. Am. 89, 1131-1137.Google Scholar
  70. Wesnousky, S. G., Scholz, C. H., Shimazaki, K., and Matsuda, T. (1983), Earthquake Frequency Distribution and the Mechanics of Faulting, J. Geophys. Res. 88, 9331–9340, doi: 10.1029/JB088iB11p09331.CrossRefGoogle Scholar
  71. Wiszniowski, J., Nguyen Van Giang, Plesiewicz, B., Lizurek, G., Lasocki, S., Dinh Quoc Van, Le Quang Khoi (2015), Preliminary Results of Anthropogenic Seismicity Monitoring in the Region of Song Tranh 2 Reservoir, Central Vietnam, Acta Geophysica 63, 843–862, doi: 10.1515/acgeo-2015-0021.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Pawel Urban
    • 1
  • Stanislaw Lasocki
    • 1
    Email author
  • Patrick Blascheck
    • 2
  • Aderson Farias do Nascimento
    • 3
  • Nguyen Van Giang
    • 4
  • Grzegorz Kwiatek
    • 5
  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Institute of GeophysicsUniversity of StuttgartStuttgartGermany
  3. 3.Departamento de GeofísicaUFRNNatalBrazil
  4. 4.Institute of GeophysicsVietnam Academy of Science and TechnologyHanoiVietnam
  5. 5.Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 3.2: Geomechanics and RheologyPotsdamGermany

Personalised recommendations