Pure and Applied Geophysics

, Volume 172, Issue 12, pp 3573–3587 | Cite as

Did an underwater landslide trigger the June 22, 1932 tsunami off the Pacific coast of Mexico?

  • Néstor Corona
  • María-Teresa Ramírez-Herrera


On June 22, 1932, a 10- to 12-m-high tsunami wave struck ~60 km off the Mexican Pacific coast. The associated earthquake that apparently produced this tsunami is questionable because of its relatively small magnitude (M s = 6.9) to produce such tsunami heights. Historical documents, survivor testimony, tsunami catalogs, a post-tsunami survey report, together with geomorphological interpretation of the continental shelf and slope, and numerical modeling were combined to characterize the tsunami parameters. Our results suggest that recorded maximum tsunami wave height, horizontal inundation, arrival time, directivity, effects, and damage are compatible with those characteristics related to an underwater landslide tsunami. The associated landslide (slump) is 4.2 km long, 3.9 km wide, 0.448 km thick, and is located in the upper continental shelf of the Armería Canyon. Elucidating the cause and mechanisms of the near-field 1932 tsunami would aid in considering a wider spectrum of tsunami sources in hazard mitigation programs of the Mexican Pacific coast.


Landslide-tsunami earthquake Mexican Pacific coast historical data tsunami modeling 



N. Corona thanks CONACYT for a Ph.D. scholarship, grant number 216323. M.T. Ramírez-Herrera acknowledges research funding by PAPPIT-UNAM, grant number IN123609 and SEP-CONACYT Ciencia Básica grant number 129456, and DGAPA-PASPA-2015. The authors want to thank PAAG guest editor Hermann M. Fritz and 3 anonymous for their incisive comments and suggestions that helped improve this manuscript.

Supplementary material

24_2015_1171_MOESM1_ESM.jpg (2.5 mb)
Fig. 1 Close-up of the topobathymetric grid focused on Cuyutlán town. Color scale shows stretched representation of the altimetric values from 1 to 15 mamsl. Green to yellow colors show sand dune barriers that reach 9–10 meters height influencing the tsunami penetration inland. (JPEG 2574 kb)
24_2015_1171_MOESM2_ESM.jpg (3.1 mb)
Fig. 2 Global multi-resolution topography model of Ryan et al. (2009).1A, Shaded topobathymetric model, b topobathymetric model with a transparency effect and delimitated areas indicating examples of low and spatial resolution zones. (JPEG 3162 kb)
24_2015_1171_MOESM3_ESM.jpg (7 mb)
Fig. 3 Isobaths interpolation. This figure shows contour line density and slumps features enhanced and revealed by increased line density. a Combined Topographic and bathymetric grid; red square—close up of areas b, c, and d. Colored scaled image shows the bathymetric grid. b Gray lines—200 m isobaths. This grid reveals that finer data are not shown with this contour interval. c 50 m isobaths, shape of slump 27 is barely distinguished. d 20 m isobath model shows clear slump headscarp, hypothesized as a possible tsunami source due to its geometry.(JPEG 7147 kb)
24_2015_1171_MOESM4_ESM.jpg (5.9 mb)
Fig. 4 Summary of computed models. M, from 1 to 30, indicates the 30 feasible scenarios for landslide tsunami generation in the Armería Canyon based on the morphological interpretation of landslide features. Color gradient displays maximum tsunami amplitudes (scale colors from blue to red). Dark lines represent isochrones at 2-min intervals. Dark arrows indicate predominant tsunami directivity. Letters in circles show sites where tsunami effects were observed. (JPEG 6040 kb)
24_2015_1171_MOESM5_ESM.jpg (3.2 mb)
Fig. 5 Wave form history. Eyewitness description indicates that the tsunami was observed as a vertical water wall that reached the town, as can be noted in charts e, d, and f. Triangle defines the reported arrival time.(JPEG 3293 kb)
24_2015_1171_MOESM6_ESM.docx (20 kb)
Supplementary material 6 (DOCX 19 kb)


  1. Assier-Rzadkieaicz, S., P. Heinrich, P. C. Sabatier, B. Savoye, and Bourillet, J. F. (2000), Numerical Modelling of a Landslide-Generated Tsunami: The 1979 Nice Event, Pure Appl. Geophys. 157, 1707–1727. doi: 10.1007/PL00001057.Google Scholar
  2. Ben-Menahem, A., and Rosenman, M. (1972), Amplitude patterns of tsunami waves from submarine earthquakes, J. Geophys. Res. 77, 3097–3128. doi: 10.1029/JB077i017p03097 CrossRefGoogle Scholar
  3. Borrero, J. C., Kalligeris, N., Lynett, P.J., Fritz, H.M., Newman, A.V., Convers, J.A. (2014), Observations and Modelling of the August 27, 2012 Earthquake and Tsunami affecting El Salvador and Nicaragua, Pure Appl. Geophys., 171, 3421–3435. doi: 10.1007/s00024-014-0782-2.Google Scholar
  4. Chávez, L. (1932), Dramático relato de la reciente catástrofe del balneario de Cuyutlán, El Nuevo Mexicano Newspaper, July 21, p. 2.Google Scholar
  5. Corona, N., and Ramírez-Herrera, M. T. (2012), Mapping and historical reconstruction of the great Mexican 22 June tsunami, Nat. Hazards Earth Sys. 12, 1337–1352. doi: 10.5194/nhess-12-1337-2012.CrossRefGoogle Scholar
  6. Coulbourn, W. T., Aubouin, J., von Huene, R., Azema, J., Cowan, S. S., Curiale, J. A., Dengo, C. A., Faas, R. W., Harrison, W. E., Hesse, R., Ladd, J. W., Muzylov, N., Shiki, T., Thomson, P. R., Westberg, M. J., and Orlofsky, S. (1982), Initial Reports of the Deep Sea Drilling Project covering Leg 67 of the cruises of the drilling vessel Glomar Challenger, Manzanillo, Mexico to Puntarenas. 67, 5–25.Google Scholar
  7. Cruz, G., and Wyss, M. (1983), Large earthquakes, mean sea level, and tsunamis along the Pacific Coast of Mexico and Central America, Bull. Seis. Soc. Am. 73, 553–570.Google Scholar
  8. Cumming, J. L. (1933), Los terremotos de Junio de 1932 en los estados de Colima y Jalisco, Universidad de México, 31-32, 68-104.Google Scholar
  9. Divins, D. L., Total Sediment Thickness of the World’s Oceans and Marginal Seas (National Geophysical Data Center, Boulder 2003).Google Scholar
  10. Einsele, G., Sedimentary Basins: Evolution, Facies, and Sediment Budget (Springer-Verlag, Germany, 1992).CrossRefGoogle Scholar
  11. Eissler, H. K., and McNally, K. C. (1984), Seismicity and Tectonics of the Rivera Plate and Implications For the 1932 Jalisco, Mexico, Earthquake, J. Geophys. Res. 89, 4520–4530. doi: 10.1029/JB089iB06p04520.CrossRefGoogle Scholar
  12. El Informador Newspaper (1932a), Cuyutlán a punto de desaparecer bajo las aguas del Océano Pacífico, June 23, pp. 1–2.Google Scholar
  13. El Informador Newspaper (1932b), La Catástrofe Ocurrida Anteayer En Cuyutlán No Tiene Precedente, June 24, pp. 1–2.Google Scholar
  14. El Universal Gráfico Newspaper (1932a), Colima y Cuyutlán, June 24, pp. 6, 7.Google Scholar
  15. El Universal Gráfico Newspaper (1932b), En Cuyutlán no quedó piedra sobre piedra, June 23, p. 15.Google Scholar
  16. Excélsior Newspaper (1932a), Cuyutlán arrasado por la invasión del océano: gigantescas olas arrasaron las casas y la gente, June 23, pp. 1, 4.Google Scholar
  17. Excélsior Newspaper (1932b), Tres minutos fueron suficientes para arrasar el balneario de Cuyutlán, June 25, pp. 1, 3.Google Scholar
  18. Farreras, S. F., and Sánchez, A. J. (1991), The tsunami threat on the Mexican west coast: A historical analysis and recommendations for hazard mitigation, Nat. Hazards, 4, 301–316. doi: 10.1007/bf00162795.CrossRefGoogle Scholar
  19. Favalli, M., Boschi, E., Mazzarini, F. and Pareschi, M. T. (2009), Seismic and Landslide Source of the 1908 Straits of Messina Tsunami (Sicily, Italy), Geophys. Res. Lett. 36, L16304. doi: 10.1029/2009GL039135.CrossRefGoogle Scholar
  20. Fritz, H. M., Hillaire, J. V., Molière, E., Wei, Y. and Mohammed, F. (2013). Twin tsunamis triggered by the 12 January 2010 Haiti earthquake, Pure Appl. Geophys., 170, 1463–1474. doi: 10.1007/s00024-012-0479-3 Google Scholar
  21. Fritz, H. M., Kongko, W., Moore, A., McAdoo, B. Goff, J., Harbitz, C., Uslu, B., Kalligeris, N., Suteja, D. and Kalsum, K. (2007), Extreme Runup from the 17 July 2006 Java Tsunami, Geophys. Res. Lett. 34, L12602. doi: 10.1029/2007GL029404.CrossRefGoogle Scholar
  22. Hampton, M. A., Lee H. J., and Locat, J. (1996), Submarine landslides, Rev. Geophys. 34, 33–59, doi: 10.1029/95RG03287.CrossRefGoogle Scholar
  23. Harahap, I. S. H., and Huan V. N. P. (2014), Generation, Propagation, Run-Up and Impact of Landslide Triggered Tsunami: A Literature Review, App. Mech. Mater. 567, 724–29. doi: 10.4028/ Scholar
  24. Harbitz, C. B., Løvholt, F., and Bungum, H. (2014). Submarine landslide tsunamis: how extreme and how likely?, Nat. Hazards, 72, 1341–1374. doi: 10.1007/s11069-013-0681-3.CrossRefGoogle Scholar
  25. Harbitz, C. B., Lovholt, F., Pedersen, G., Glimsdal, S. and Masson, D. G. (2006), Mechanisms of Tsunami Generation by Submarine Landslides - a Short Review, Norw. J. Geol. 86, 255–264.Google Scholar
  26. Iwasaki, S. (1997), The wave forms and directivity of a tsunami generated by an earthquake and a landslide, Sci. Tsunami Haz. 15, 23–40.Google Scholar
  27. Kawamura, K., Sasaki, T., Kanamatsu, T., Sakaguchi, A., and Ogawa, Y. (2012), Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation, Geophys. Res. Lett. 39, 1–5. doi: 10.1029/2011GL050661.CrossRefGoogle Scholar
  28. Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., and Bornhold, B. D. (1996), The landslide tsunami of November 3, 1994, Skagway harbor, Alaska, J. Geophys. Res. 101, 6609–6615, doi: 10.1029/95JC03562.CrossRefGoogle Scholar
  29. Lee, H. J., Locat, J., Desgagnés, P., Parsons, J. D., McAdoo, B. G., Orange, D. L., Puig, P., Wong, F. L., Dartnell, P. and Boulanger, E., Submarine Mass Movements on Continental Margins, In Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy (eds. Nittrouer, C. A., Austin, J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P. M., and Wiberg, P. L.) (Oxford 2009) pp. 213–274.Google Scholar
  30. Luhr, J. F., Nelson, S. A., Allan, J. F., and Carmichael, I. S. E. (1985), Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump, Geology, 13, 54–57.CrossRefGoogle Scholar
  31. Lynett, P. J., Borrero,J. C., Liu, P. F., and Synolakis, E. C., Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami, In: Landslide Tsunamis: Recent Findings and Research Directions (e. Bardet, J. P., Imamura, F., Synolakis, C. E., Okal, E. A., and Davies, H. L.) (Birkhäuser Basel 2003) pp. 2119–2146.Google Scholar
  32. Masson, D., Harbitz, C., Wynn, R., Pedersen, G., and Løvholt, F. (2006), Submarine landslides: processes, triggers and hazard prediction, P. Roy. Soc. Lon. A Mat. 364, 2009–2039. doi: 10.1098/rsta.2006.1810.Google Scholar
  33. Mohammed, F. and Frtitz, H. M. (2012), Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, J. Geophys. Res. 117, C11015, doi: 10.1029/2011JC007850.CrossRefGoogle Scholar
  34. McAdoo, B., Pratson, L., and Orange, D. (2000), Submarine landslide geomorphology, US continental slope, Mar. Geol. 169, 103–136.CrossRefGoogle Scholar
  35. National Geophysical Data Center, National Oceanic and Atmospheric Administration (2012), Tsunami Event Database, (accessed 20 December 2012).
  36. Nixon, G., T. (1982), The relationship between Quaternary volcanism in central Mexico and the seismicity and structure of subducted ocean lithosphere, Geol. Soc. Am. Bull. 93, 514–523.CrossRefGoogle Scholar
  37. Novosibirsk Tsunami Laboratory (2011), Historical Tsunami Database for the World Ocean, Institute of Computational Mathematics and Mathematical Geophysics SB RAS. (accessed 15 September 2011).
  38. Okal, E. A. (2003), Normal mode energetics for far-field tsunamis generated by dislocations and landslides, Pure Appl. Geophys. 160, 2189–2221. doi: 10.1007/s00024-003-2426-9 Google Scholar
  39. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75, 1135–1154.Google Scholar
  40. Okal, E. A. (2000), T waves from the 1998 Sandaun PNG sequence: Definitive timing of the slump, Eos, Trans. Am. Geophys. Union. 81, 142.Google Scholar
  41. Okal, E. A. and Synolakis, C.E. (2003), Field Survey and Numerical Simulations: A Theoretical Comparison of Tsunamis from Dislocations and Landslides, Pure Appl. Geophys. 160, 2177–2188.Google Scholar
  42. Okal, E. A., and Borrero, J. C. (2011), The ‘tsunami earthquake’ of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations, Geophys. J. Int. 187, 1443–1459. doi: 10.1111/j.1365-246X.2011.05199.x.CrossRefGoogle Scholar
  43. Okal, E. A. and Synolakis, C.E. (2004), Source discriminants for near-field tsunamis, Geophys. J. Int. 158, 899–912.CrossRefGoogle Scholar
  44. Ordoñez, E. (1933), Seismic activity in Mexico during June, 1932, B. Seismol. Soc. Am. 23, 80–82.Google Scholar
  45. Ramírez-Herrera, M.-T., Corona, N., Lagos, M., Černý, J., Goguitchaichvili, A., Goff, J., Chagué-Goff, C., Machain, M. L., Zawadzki, A., Jacobsen, G., Carranza-Edwards, A., Lozano, S., and Blecher, L. (2014), Unearthing earthquakes and their tsunamis using multiple proxies: the 22 June 1932 event and a probable fourteenth-century predecessor on the Pacific coast of Mexico, Int. Geol. Rev. 56, 1584–1601. doi: 10.1080/00206814.2014.951977.CrossRefGoogle Scholar
  46. Ramírez-Herrera, M. T., and Urrutia-Fucugauchi, J. (1999), Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico, Geomorphology, 28, 237–250.CrossRefGoogle Scholar
  47. Ranguelov, B., Tinti, S., Pagnoni, G., Tonini, R., Zaniboni, F., and Armigliato, A. (2008), The nonseismic tsunami observed in the Bulgarian Black Sea on 7 May 2007: Was it due to a submarine landslide?, Geophys. Res. Lett. 35, L18613. doi: 10.1029/2008gl034905.CrossRefGoogle Scholar
  48. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R. (2009), Global Multi-Resolution Topography synthesis, Geochem. Geophy. Geosy. 10, Q03014. doi: 10.1029/2008GC002332.CrossRefGoogle Scholar
  49. Salazar, J. El Maremoto de Cuyutlán 1932 (Sociedad Colimense de Estudios Históricos, Colima 1989).Google Scholar
  50. Sánchez, A. J., and Farreras, S. F., Catálogo de Tsunamis (Maremotos) en la Costa Occidental de México (Boulder, Colorado, 1993).Google Scholar
  51. Satake, K. and Tanioka, Y. (2003), The July 1998 Papua New Guinea Earthquake: mechanism and quantification of unusual tsunami generation, Pure Appl. Geophys. 160, 2087–2188.Google Scholar
  52. Singh, S. K., Astiz, L., and Havskov, J. (1981), Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: A reexamination, B. Seismol. Soc. Am. 71, 827–843.Google Scholar
  53. Singh, S. K., Pacheco, J. F., and Shapiro, N. (1998), The earthquake of 16 November, 1925 (Ms = 7.0) and the reported tsunami in Zihuatanejo, Mexico, Geofis. Int. 37, Short Note.Google Scholar
  54. Singh, S. K., Ponce, L., and Nishenko, S. P. (1985), The great Jalisco, Mexico, earthquakes of 1932: Subduction of the Rivera plate, B. Seismol. Soc. Am. 75, 1301–1313.Google Scholar
  55. Singh, S. K., Rodríguez, M., and Espindola, J. M. (1984), A catalog of shallow earthquakes of Mexico from 1900 to 1981, B. Seismol. Soc. Am. 74, 267–280.Google Scholar
  56. Soloviev, S. L., and Go, C. N., Catalogue of tsunamis on the eastern shore of the Pacific Ocean, Canadian Translation of Fisheries and Aquatic Sciences No. 5078 (Nauka Publishing House, Moscow 1975).Google Scholar
  57. Servicio Sismológico Nacional (2011), Catalogo de sismos, (accessed 2 November 2011).
  58. Strasser, M., Kölling, M., dos Santos Ferreira, C., Fink, H. G., Fujiwara, T., Henkel, S., Ikehara, K., Kanamatsu, T., Kawamura, K., and Kodaira, S. (2013), A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake, Geology, 41, 935–938.CrossRefGoogle Scholar
  59. Synolakis, C. E. Borrero, J. C., Plafker, G., Yalçiner, A., Greene, G., and Watts, P. (2000) Modeling the 1994 Skagway, Alaska Tsunami, EOS, Trans. Am. Geophys. Union 81, F748 (abstract).Google Scholar
  60. Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., Shi, F., Ma, G., Thingbaijam, K. K. S., and Mai, P. M. (2014), Did a submarine landslide contribute to the 2011 Tohoku tsunami?, Mar. Geol. 357, 344–361. doi: 10.1016/j.margeo.2014.09.043.CrossRefGoogle Scholar
  61. Tappin, D. R., Matsumoto, T., Watts, P., Satake, K., McMurtry, G. M., Matsuyama, M., Lafoy, Y., Tsuji, Y., Kanamatsu, T., Lus, W., Iwabuchi, Y., Yeh, H., Matsumotu, Y., Nakamura, M., Mahoi, M., Hill, P., Crook, K., Anton, L., and Walsh, J. P. (1999), Sediment slump likely caused 1998 Papua New Guinea tsunami, EOS T. Am. Geophys. Un. 80, 329. doi: 10.1029/99EO00241.CrossRefGoogle Scholar
  62. ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., Andrews, B. D. (2014), Assessment of tsunami hazard to the U.S. Atlantic margin, Mar. Geol., 353, 31–54. doi: 10.1016/j.margeo.2014.02.011.CrossRefGoogle Scholar
  63. von Huene, R., Kirby, S., Miller, J., and Dartnell, P. (2014), The destructive 1946 Unimak near-field tsunami: New evidence for a submarine slide source from reprocessed marine geophysical data, Geophys. Res. Lett., 41, 6811–6818, doi: 10.1002/2014GL061759.CrossRefGoogle Scholar
  64. Ward, S. N. (2001), Landslide tsunami, J. Geophys. Res-Sol. Ea. 106, 11201–11215.CrossRefGoogle Scholar
  65. Watts, P., Grilli, S. T., Kirby, T. J., Fryer, G. J., and Tappin, D. R. (2003), Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model, Nat. Hazard Earth Sys. 3, 391–402.CrossRefGoogle Scholar
  66. Watts, P., Grilli, S. T., Tappin, D. R., and Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. J. Waterw. Port Coast. Ocean Eng., 131, 298–310.CrossRefGoogle Scholar
  67. Watts, P., and Tappin, D., Geowave Validation with Case Studies: Accurate Geology Reproduces Observations, In Submarine Mass Movements and Their Consequences (e. Yamada, Y., Kawamura, K, Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., and Strasser, M.) (Springer, Netherlands 2012) pp. 517–524.Google Scholar
  68. Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., and Strasser, M. (Eds.) Submarine Mass Movements and Their Consequences (Springer 2012).Google Scholar
  69. Zaniboni, F., Armigliato, A., Pagnoni, G. and Tinti, S. (2014), Continental Margins as a Source of Tsunami Hazard: The 1977 Gioia Tauro (Italy) Landslide–tsunami Investigated through Numerical Modeling, Mar. Geol. 357 210–217. doi: 10.1016/j.margeo.2014.08.011.CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Centro de Estudios en Geografía Humana, El Colegio de Michoacán A.C.La PiedadMexico
  2. 2.Laboratorio Universitario de Geofísica Ambiental and Instituto de GeografíaUniversidad Nacional Autónoma de México, Circuito de la Investigación, Ciudad UniversitariaCoyoacánMexico
  3. 3.Berkeley Seismological LaboratoryUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations