Pure and Applied Geophysics

, Volume 172, Issue 12, pp 3589–3616 | Cite as

Far-Field Tsunami Impact in the North Atlantic Basin from Large Scale Flank Collapses of the Cumbre Vieja Volcano, La Palma

  • Babak Tehranirad
  • Jeffrey C. Harris
  • Annette R. Grilli
  • Stephan T. Grilli
  • Stéphane Abadie
  • James T. Kirby
  • Fengyan Shi


In their pioneering work, Ward and Day suggested that a large scale flank collapse of the Cumbre Vieja Volcano (CVV) on La Palma (Canary Islands) could trigger a mega-tsunami throughout the North Atlantic Ocean basin, causing major coastal impact in the far-field. While more recent studies indicate that near-field waves from such a collapse would be more moderate than originally predicted by Ward and Day [Løvholt et al. (J Geophy Res 113:C09026, 2008); Abadie et al. (J Geophy Res 117:C05030, 2012)], these would still be formidable and devastate the Canary Island, while causing major impact in the far-field at many locations along the western European, African, and the US east coasts. Abadie et al. (J Geophy Res 117:C05030, 2012) simulated tsunami generation and near-field tsunami impact from a few CVV subaerial slide scenarios, with volumes ranging from 20 to 450 km\(^3\); the latter representing the most extreme scenario proposed by Ward and Day. They modeled tsunami generation, i.e., the tsunami source, using THETIS, a 3D Navier-Stokes (NS) multi-fluid VOF model, in which slide material was considered as a nearly inviscid heavy fluid. Near-field tsunami impact was then simulated for each source using FUNWAVE-TVD, a dispersive and fully nonlinear long wave Boussinesq model [Shi et al. (Ocean Modell 43–44:36–51, 2012); Kirby et al. (Ocean Modeling, 62:39–55, 2013)]. Here, using FUNWAVE-TVD for a series of nested grids of increasingly fine resolution, we model and analyze far-field tsunami impact from two of Abadie et al.’s extreme CVV flank collapse scenarios: (i) that deemed the most “credible worst case scenario” based on a slope stability analysis, with a 80 km\(^3\) volume; and (ii) the most extreme scenario, similar to Ward and Day’s, with a 450 km\(^3\) volume. Simulations are performed using a one-way coupling scheme in between two given levels of nested grids. Based on the simulation results, the overall tsunami impact is first assessed in terms of maximum surface elevation computed along the western European and African, and US east coasts (USEC). Strong wave elevation decay is predicted over the wide USEC shelf, which is shown to be essentially due to bottom friction effects. We then show more detailed results for the USEC, which is the object of high-resolution tsunami inundation mapping under the auspices of the US National Tsunami Hazard Mitigation Program. In this context, we compare the maximum surface elevation predicted along the coastline for each CVV scenario and show that, besides the initial directionality of the sources, coastal impact is mostly controlled by focusing/defocusing effects resulting from the shelf bathymetric features. A simplified ray-tracing analysis confirms this controlling effect of the wide USEC shelf for incident long waves. Finally, we perform high-resolution (10 m) inundation mapping for the most extreme CVV scenario and show results at one of the most vulnerable and exposed communities in the mid-Atlantic US states, in and around Ocean City, Maryland. Such maps are being generated for all exposed areas of the USEC, to be used in tsunami hazard assessment and mitigation work.


Tsunami propagation coastal geohazard subaerial landslide navier-stokes VOF model boussinesq wave models volcano collapse Cumbre Vieja La Palma 



Partial funding for this work was provided by grant #NA10NMS4670010 of the National Tsunami Hazards Mitigation Program (NTHMP), grant #EAR-09-11499 of the US National Science Foundation, and grant #037058 of the European Commission.


  1. Abadie S., Caltagirone J.P. and P. Watremez, Splash-up generation in a plunging breaker. Comptes Rendus de l’Académie des Sciences, Ser. IIB, 326:553559, 1998.Google Scholar
  2. Abadie S., Morichon D., Grilli S.T. and S. Glockner, Splash-up generation in a plunging breaker. La Houille Blanche, 1 (Feb. 2008):21–26, doi: 10.1051/lhb:2008001, 2008.
  3. Abadie S., Morichon D., Grilli S.T. and S. Glockner, Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coastal Engineering, 57:779–794, doi: 10.1016/j.coastaleng.2010.03.003, 2010.
  4. Abadie S., Harris J.C., Grilli S.T. and R. Fabre, Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands) : tsunami source and near field effects. Journal of Geophysical Research, 117:C05030, doi: 10.1029/2011JC007646, 2012.
  5. Barkan, R., ten Brick, U.S. and Lin, J. Far field tsunami simulations of the 1755 Lisbon earthquake:Implication for tsunami hazard to the U.S. East Coast and the Caribbean. Marine Geology, 264:109–122, 2009.Google Scholar
  6. Bouws, E., and J. A. Battjes, A Monte Carlo approach to the computation of refraction of water waves. Journal of Geophysical Research: Oceans, 87(C8): 5718–5722, 1982.Google Scholar
  7. Carracedo J., Day S., Guillo, H. and P. Gravestock, Later stage of volcanic evolution of La Palma, Canary Islands: rift evolution, giant landslides, and the genesis of the Caldera de Taburiente. Bulletin of the Geological Society of America, 111:755–768, 1999.Google Scholar
  8. Cochonat P., Lenat J. F., Bachelery P., Boivin P., Corniglia B., Deniel C., Labazuy P., Lipman P., Oilier G., Savoye B., Vincent P. and M. Voisset, Importance des dépôts gravitaires dans la mise en place d’un système volcano-sédimentaire sous-marin (Volcan de la Fournaise, Ile de la Réunion). Comptes Rendus de l’ Académie des Sciences, Ser. IIB., 311:679–686, 1990.Google Scholar
  9. Days S.J., Watts P., Grilli S.T. and J.T. Kirby, Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215:59–92, doi: 10.1016/j.margeo.2004.11.008, 2005.
  10. Dean, R. G., and Dalrymple, R. A., Water wave mechanics for engineers and scientists. World Scientific, Advanced Series on Ocean Engineering, Prentice-Hall, 1991.Google Scholar
  11. Fritz, H.M. and J.C. Borrero, Somalia field survey of the 2004 Indian Ocean Tsunami. Earthquake Spectra 22(S3):S219–S233, 2006.Google Scholar
  12. Geist E., P. Lynett, and J. Chaytor, Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264:41–52, doi: 10.1016/j.margeo.2008.09.005, 2009.
  13. Gisler G., Weaver R. and M. Gittings, SAGE calculations of the tsunami threat from La Palma. Science of Tsunami Hazards, 24:288–301, 2006.Google Scholar
  14. Glimsdal S., Pedersen G.K., Harbitz C.B., and Løvholt F., Dispersion of tsunamis: does it really matter ? Nat. Hazards Earth Syst. Sci., 13:1507–1526, doi: 10.5194/nhess-13-1507-2013, 2013.
  15. Grilli, A.R., Grilli S.T., David, E. and C. Coulet, Modeling of tsunami propagation in the Atlantic Ocean Basin for tsunami hazard assessment along the North Shore of Hispaniola. In Proc. 25th Offshore and Polar Engng. Conf. (ISOPE15, Kona, HI, USA. June 21–26, 2015). Intl. Society of Offshore and Polar Engng., pps. 733–740, 2015a.Google Scholar
  16. Grilli S.T., Dubosq S., Pophet N., Pérignon Y., Kirby J.T., and F. Shi, Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico thrench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth System Sciences, 10:2109–2125, doi: 10.5194/nhess-2109-2010, 2010.
  17. Grilli, S.T., Harris, J., F. Shi, J.T. Kirby, T.S. Tajalli Bakhsh, E. Estibals and B. Tehranirad, Numerical modeling of coastal tsunami dissipation and impact. In Proc. 33rd Intl. Coastal Engng. Conf. (P. Lynett and J. Mc Kee Smith, eds.) (ICCE12, Santander, Spain, July, 2012), 12 pps. World Scientific Publishing Co. Pte, 2012.Google Scholar
  18. Grilli, S.T., J.C. Harris, T. Tajali-Bakhsh, T.L. Masterlark, C. Kyriakopoulos, J.T. Kirby and F. Shi, Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170:1333–1359, doi: 10.1007/s00024-012-0528-y, 2013.
  19. Grilli S.T., O’Reilly C., Harris J.C., Tajalli-Bakhsh T., Tehranirad B., Banihashemi S., Kirby J.T., Baxter C.D.P., Eggeling T., Ma G. and F. Shi, Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City, MD. Natural Hazards, 76(2):705–746, doi: 10.1007/s11069-014-1522-8, 2015b.
  20. Grilli, S.T., Taylor, O.-D. S., Baxter, D.P. and S. Maretzki, Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Marine Geology, 264(1–2):74–97, doi: 10.1016/j.margeo.2009.02.010, 2009.
  21. Grilli S.T., Ioualalen M., Asavanant J., Shi F., Kirby J.T., and P. Watts, Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. Journal of Waterway, Port, Coastal, and Ocean Engineering, 33:414–428, doi:  10.1061/(ASCE)0733-950X(2007)133:6(414), 2007.
  22. Grilli, S.T. and P. Watts. Tsunami generation by submarine mass failure Part I : Modeling, experimental validation, and sensitivity analysis. J. Waterway Port Coastal and Ocean Engng., 131(6):283–297, doi: 10.1061/(ASCE)0733-950X(2005)131:6(283), 2005.
  23. Hirt C.W. and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39:201–225, 1981.Google Scholar
  24. Holcomb R. T. and R.C. Searle, Large landslides from oceanic volcanoes. Marine Geotechnology, 10:19–32, 1991.Google Scholar
  25. Hunt J.E., Wynn R.B., Masson D.G., Talling P.J., and D.A.H. Teagle, Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands. Geochem. Geophys. Geosyst., 12(12), 2011.Google Scholar
  26. Hunt J.E., Wynn R.B., Talling P.J. and D.G. Masson, Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: Sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochem. Geophys. Geosyst., 14(7):1525–2027, 2013.Google Scholar
  27. Inoue K., Shimabara-Shigatusaku Earthquake and topographic changes by Shimabara Catastrophe in 1792. Geographical Reports Tokyo Metropolitan University, 35:59–69, 2000.Google Scholar
  28. Ioualalen M., Asavanant J., Kaewbanjak N., Grilli S.T., Kirby J.T. and P. Watts, Modeling the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112:C07024, doi: 10.1029/2006JC003850, 2007.
  29. Kaiser G., Scheele L., Kortenhaus A., Lvholt F., Rmer H., and Leschka S., The influence of land cover roughness on the results of high resolution tsunami inundation modeling, Nat. Hazards Earth Syst. Sci., 11:2521–2540, doi: 10.5194/nhess-11-2521-2011, 2011.
  30. Karlsson J.M., Skelton A., Sanden M., Ioualalen M., Kaewbanjak N., Pophet N., Asavanant, J. and A. von Matern, Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand. Journal of Geophysical Research, 114:C10023, 2009.Google Scholar
  31. Kirby J.T., Shi F., Tehranirad B., Harris J.C. and S.T. Grilli, Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modeling, 62:39–55, doi: 10.1016/j.ocemod.2012.11.009, 2013.
  32. Legros, F., The mobility of long-runout landslides. Engineering Geology, 63:301–331, 2002.Google Scholar
  33. Løvholt F., Pedersen G. and G. Gisler, Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113:C09026, doi: 10.1029/2007JC004603, 2008.
  34. Lubin P., Vincent S., Abadie S. and J.P. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coastal Engineering, 53:631–655, 2006.Google Scholar
  35. Mader C.L., Modeling the La Palma landslide tsunami. Science of Tsunami Hazards., 19:150–170, 2001.Google Scholar
  36. Madsen P.A., D.R. Fuhrman and H. A. Schaffer, On the solitary wave paradigm for tsunamis. J. Geophys. Res., 113:C12012, doi: 10.1029/2008JC004932, 2008.
  37. Masson D., Watts A., Gee M., Urgeles R., Mitchell N., Bas T.L. and M. Canals, Slope failures on the flanks of the western Canary Islands. Earth-Science Review, 57:1–35, 2002.Google Scholar
  38. Mohammed, F. and Fritz, H.M., Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res. Oceans, 117:C11015, doi: 10.1029/2011JC007850, 2012.
  39. Moore J.G., Clague D.A., Holcomb R.T., Lipman P.W., Normark W.R. and M.E. Torresan, Prodigious submarine landslides on the Hawaiian Ridge. Journal of Geophysical Research, 94:17465–17484, 1989.Google Scholar
  40. Morichon D. and S. Abadie, Vague générée par un glissement de terrain, influence de la forme initiale et de la loi de déformabilité du glissement. La Houille Blanche, 1:111–117, 2010.Google Scholar
  41. Oehler J.F., Labazuy P. and J.F. Lénat, Recurrence of major flank landslides during the last 2 Ma history of Réunion Island. Bulletin Volcanology, 66:585–595, 2004.Google Scholar
  42. Pararas-Carayannis G., Evaluation of the threat of mega tsunamis generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Science of Tsunami Hazards, 20:251, 2002.Google Scholar
  43. Pérignon Y., Tsunami hazard modeling. Master’s thesis, University of Rhode Island and Ecole Centrale de Nantes, 2006.Google Scholar
  44. Riss J., Tric E., Fabre R., Lebourg T. and S. Abadie, Potential collapse of the Cumbre Vieja volcanic edifice (Canary Island, Spain). Geophys. Res. Abstr., 12, EGU2010-4843, EGU General Assembly, 2010.Google Scholar
  45. Robinson J.E. and B.W. Eakins, Calculated volumes of individual shield volcanos at the young end of the Hawaiian Ridge. Volcanologic Geothermal Research, 151:309–317, 2006.Google Scholar
  46. Ryan W.B.F., Carbotte S.M., Coplan J.O., O’Hara S., Melkonian A., Arko R., Weissel A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J. and R. Zemsky, Global Multi-Resolution Topography synthesis. Geochemistry Geophysics Geosystems, 10:Q03014, 2009.Google Scholar
  47. Shi F., Kirby J.T., Harris J.C., Geiman J.D., and S.T. Grilli, A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44:36–51, doi: 10.1016/j.ocemod.2011.12.004, 2012.
  48. Tappin D.R., Watts P. and S.T. Grilli, The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Sciences, 8:243–266,, 2008.
  49. Tappin D.R., Grilli S.T., Harris J.C., Geller R.J., Masterlark T., Kirby J.T., F. Shi, G. Ma, K.K.S. Thingbaijamg, and P.M. Maig, Did a submarine landslide contribute to the 2011 Tohoku tsunami?, Marine Geology, 357:344–361 doi: 10.1016/j.margeo.2014.09.043, 2014.
  50. Tehranirad B., Shi F., Kirby, J.T., Harris J.C. and S.T. Grilli, Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Technical report, No. CACR-11-02, Center for Applied Coastal Research, University of Delaware, 2011.Google Scholar
  51. ten Brink U.S., Chaytor J.D., Geist E.L., Brothers D.S. and B.D. Andrews, Assessment of tsunami hazard to the U.S. Atlantic margin. Marine Geology, 353:31–54, doi: 10.1016/j.margeo.2014.02.011, 2014.
  52. Tinti S., Manucci A., Pagnoni G., Armigliato A. and F. Zaniboni, The 30th December 2002 landslide-induced tsunami in Stromboli: sequence of the events reconstructed from eyewitness accounts. Natural Hazards Earth System Science, 5:763–775, 2005.Google Scholar
  53. Ward S. N. and S. Day, Cumbre Vieja Volcano potential collapse at La Palma, Canary Islands. Geophysical Research Letter, 28:397–400, 2001.Google Scholar
  54. Watts P., Grilli S.T., Kirby J.T., Fryer G.J. and D.R. Tappin, Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 3:391–402, 2003.Google Scholar
  55. Wei G., Kirby J.T., Grilli S.T. and R. Subramanya, A fully nonlinear Boussinesq model for free surface waves. Part I: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294:71–92, 1995.Google Scholar
  56. Wynn R. and D. Masson, Canary Islands landslides and tsunami generation: Can we use turbidite deposits to interpret landslide processes. In: Locat J, Mienert J (eds) Submarine Mass Movements and Their Consequences, 325–332. Kluwer Academic Publishers Dordrecht Netherlands, 2003.Google Scholar
  57. Zhou H., Moore C.W., Wei Y. and V.V. Titov, A nested-grid Boussinesq type approach to modelling dispersive propagation and runup of landslide generated tsunamis. Natural Hazards and Earth System Sciences, 11:2677–2697, doi: 10.5194/nhess-11-2677-2011, 2011.

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Babak Tehranirad
    • 1
  • Jeffrey C. Harris
    • 2
    • 4
  • Annette R. Grilli
    • 2
  • Stephan T. Grilli
    • 2
  • Stéphane Abadie
    • 3
  • James T. Kirby
    • 1
  • Fengyan Shi
    • 1
  1. 1.Center for Applied Coastal Research, Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Ocean EngineeringUniversity of Rhode IslandNarragansettUSA
  3. 3.Laboratoire SIAMEUniversité de Pau et des Pays de l’AdourAngletFrance
  4. 4.Saint-Venant Laboratory for HydraulicsUniversité Paris-EstChatouFrance

Personalised recommendations