Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 1, pp 35–47 | Cite as

Tempo-Spatial Impact of the 2011 M9 Tohoku-Oki Earthquake on Eastern China

  • Lifeng Wang
  • Jie Liu
  • Jing Zhao
  • Jingui Zhao
Article
  • 193 Downloads

Abstract

We investigate in this study the impact of the Tohoku-Oki earthquake on Eastern China, and particularly focus on postseismic relaxation processes. We first invert for postseismic slip on the fault plane based on the GPS measurements of GEONET in Japan. Then, we use a layered rheological model to theoretically investigate the deep viscoelastic relaxation process. The Tohoku-Oki mainshock produced significant strain changes in Eastern China, dominantly east–west-oriented extension with a level close to or higher than the tectonic strain rates at the east border of China. The strain due to the postseismic stress relaxations has similar patterns as those produced by the mainshock, but with smaller magnitudes. The Tohoku-Oki earthquake impacts Eastern China for decades, but dominantly in the first 2–3 years after the mainshock and caused an apparent displacements and decrease of seismicity rate in Northeast China. For a long-term of 100 years, the Tohoku-Oki earthquake produces about 10 % of the tectonic strain rates in Eastern China, due to viscoelastic relaxation at the deep depth.

Keywords

GPS postseismic relaxation 

Notes

Acknowledgments

We acknowledge Geospatial Information Authority (GSI) of Japan for providing access to the GPS measurements of GEONET, Yanqiang Wu for providing the GPS date in Eastern China, and the anonymous reviewers for constructive suggestions. This work is supported by NSFC-41204065 project and Key Project of the National Eleventh-Five Year Research Program of China (2012BAK19B02).

Supplementary material

24_2015_1121_MOESM1_ESM.doc (980 kb)
Supplementary material 1 (DOC 980 kb)

References

  1. Bürgmann, R. & Dresen, G., 2008. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations, Ann. Rev. Earth Planet. Sci., 36, 531–567.Google Scholar
  2. Burchfiel, B.C., Royden, L.H., Hilst, R.D.v.d., Hager, B.H., Chen, Z., King, R.W., Li, C., Lu, J., Yao, H. & Kirby, E., 2008. A geological and geophysical context for Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China, GSA Today, 18.Google Scholar
  3. Chen, W., Gan, W., Xiao, G., Liang, S. & Sheng, C., 2012. The impact of 2011 Tohoku-Oki earthquake in Japan on crustal deformation of Northeastern region in China, Seismology and Geology, 425–439.Google Scholar
  4. Cheng, J., Liu, M., Gan, W., Xu, X., Huang, F. & Liu, J., 2014. Seismic impact of the Mw 9.0 Tohoku earthquake in Eastern China, Bull. Seis. Soc. Am, 104, 1258–1267.Google Scholar
  5. Deng, Q., Zhang, P., Ran, Y., Yang, X., Min, W. & Chen, L., 2003. Active tectonics and earthquake activities in China, Earth Science Frontiers, 10, 66–73.Google Scholar
  6. Diao, F., Xiong, X., Wang, R., Zheng, Y., Walter, T.R., Weng, H. & Li, J., 2013. Overlapping post-seismic deformaiton processes: afteslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake, Geophys. J. Int.Google Scholar
  7. Dieterich, J.H., 1979. Modeling of rock friction: 2. Simulation of preseismic slip, J. Geophys. Res., 84, 2161–2168.Google Scholar
  8. Dziewoński, A. & Anderson, D.L., 1981. Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297–356.Google Scholar
  9. Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N. & Yoshiyuki, K., 2011. The 2011 Tohoku-oki earthquake: Displacement reaching the Trench axis, Science, 334.Google Scholar
  10. Fukuda, J., Kato, A., Kato, N. & Aoki, Y., 2013. Are the frictional properties of creeping faults persistent? Evidence from rapid afterslip following the 2011 Tohoku-oki earthquake, Geophys. Res. Lett.Google Scholar
  11. Heki, K., 2001. Seasonal Modulation of Interseismic Strain Buildup in Northeastern Japan Driven by Snow Loads, Science, 293, 89–92.Google Scholar
  12. Hwang, J.-s., Yun, H.-S., Huang, H., Jung, T.-J., Lee, D.-H. & We, K.-J., 2012. The 2011 Tohoku-Oki earthquake’s influence on the Asian plates and Korean geodetic network, Chinese J. Geophys., 1884–1893.Google Scholar
  13. Ide, S., 2013. The proportionality between relative plate velocity and seismicity in subduction zones, Nat Geosci., 6, 780–784. doi: 10.1038/ngeo1901.
  14. Jia, K., Zhou, S. & Wang, R., 2012. Stress interactions within the strong earthquake from 2001 to 2010 in the Bayankala Block of Eastern Tibet, Bull. Seis. Soc. Am, 102, 2157–2164.Google Scholar
  15. Jiang, Z., Zhang, X. & Chen, B., 2000. Characteristics of recent horizontal movement and strain-stress field in the crust of North China, Chinese J. Geophys., 43, 657–665.Google Scholar
  16. Katsumata, A., 2010. Depth of the Moho discontinuity beneath the Japanese islands estimated by traveltime analysis, J. Geophys. Res., 115.Google Scholar
  17. Liu, J.Y., Chen, Y.I., Chen, C.H., Liu, C.Y., Chen, C.Y., Nishihashi, M., Li, J.Z., Xia, Y.Q., Oyama, K.I., Hattori, K. & Lin, C.H., 2009. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake, J. Geophys. Res., 114.Google Scholar
  18. Lohman, R. & Simons, M., 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling, Geocham. Geophys. Geosyst., 6.Google Scholar
  19. Masterlark, T. & Wang, H.F., 2002. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes, Bull. Seism. Soc. Am., 92, 1470–1486.Google Scholar
  20. Mignan, a., Jiang, C., Zechar, J.d., Wiemer, S., Wu, Z. & Huang, Z., 2013. Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Testing Center, Bull. Seis. Soc. Am., 103, 845–859.Google Scholar
  21. Moritz, H., 1978. Least-Squares Collocation, Review of Geophysics and Space Physics, 16, 421–429.Google Scholar
  22. Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27.Google Scholar
  23. Ogata, Y., 1999. Seismicity analysis through point-process modeling: A review, Pure Appl. Geophys., 155, 471–507.Google Scholar
  24. Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018–1040.Google Scholar
  25. Okutani, T. & Ide, S., 2011. Statistic analysis of swarm activities around the Boso Peninsula, Japan: Slow slip events beneath Tokyo Bay?, Earth and Planetary Space, 63, 419–426.Google Scholar
  26. Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M. & Imakiire, T., 2012. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan, J. Geophys. Res., 117.Google Scholar
  27. Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M. & Imakiire, T., 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature.Google Scholar
  28. Page, M., Custodio, S., Archuleta, R. & Carlson, J.M., 2009. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts, J. Geophys. Res, 114.Google Scholar
  29. Parsons, T., Segou, M. & Marzocchi, W., 2014. The global aftershock zone, Tectonophysics, 618, 1–34.Google Scholar
  30. Peltzer, G., Rosen, P., Rogez, F. & Hudnut, K., 1998. Poroelastic rebound along the Landers 1992 earthquake surface rupture, J. Geophys. Res., 103, 30,131–130,146.Google Scholar
  31. Peng, Y., Zhou, S., Zhuang, J. & Shi, J., 2012. An approach to detect the abnormal seismicity increase in Southwestern China triggered co-seismically by 2004 Sumatra Mw9.2 earthquake, Geophys. J. Int, 1734–1740.Google Scholar
  32. Perfettini, H. & Avouac, J.P., 2014. The seismic cycle in the area of the 2011 Mw 9.0 Tohoku-Oki earthquake, J. Geophys. Res.Google Scholar
  33. Pollitz, F., 1992. Postseismic relaxation theory on the spherical earth, Bull. Seism. Soc. Am, 82, 422–453.Google Scholar
  34. Pollitz, F., Burgmann, R. & Banerjee, P., 2011. Geodetic slip model of the 2011 M9.0 Tohoku earthquake, Geophys. Res. Lett, 38.Google Scholar
  35. Rundle, J.B. & Jackson, D.D., 1977. A three-dimensional viscoelastic model of a strike-slip fault, Geophys. J. R. astr. Soc., 49, 575–591.Google Scholar
  36. Suito, H., Iizuka, M. & Hirahara, K., 2002. 3-D viscoelastic FEM modeling of crustal deformation in Northeast Japan, Pageoph, 159, 2239–2259.Google Scholar
  37. Teng, J., Deng, Y., Badal, J. & Zhang, Y., 2014. Moho depth, seismicity and seismogenic structure in China mainland, Tectonophysics, 627, 108–121.Google Scholar
  38. Tse, S.T. & Rice, J.R., 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472.Google Scholar
  39. vanDam, T.M., Blewitt, G. & Heflin, M.B., 1994. Atmospheric pressure loading effects on Global Positioning System coordinate diterminations, J. Geophys. Res., 99, 23939–23950.Google Scholar
  40. Vey, S., Calais, E., Llubes, M., Florsch, N., Woppelmann, G., Hinderer, J., Amalvict, M., Lalancette, M.F., Simon, B., Duquenne, F. & Hasse, J.S., 2002. GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates: a case study in Brittany, France, J. Geod., 419–427.Google Scholar
  41. Wang, L., Hainzl, S., Özeren, M.S. & Ben-Zion, Y., 2010. Postseismic deformation induced by brittle rock damage of aftershocks, J. Geophys. Res., 115.Google Scholar
  42. Wang, L., Hainzl, S., Zöller, G. & Holschneider, M., 2012. Stress- and aftershock- constrained joint inversions for co- and post- seismic slip applied to the 2004 M6.0 Parkfield earthquake, J. Geophys. Res., 117.Google Scholar
  43. Wang, L., Wang, R., Roth, F., Enescu, B., Hainzl, S. & Ergintav, S., 2009. Afterslip and viscoelastic relaxation following the 1999 M7.4 İzmit earthquake, from GPS measurements, Geophys. J. Int., 178, 1220–1237.Google Scholar
  44. Wang, M., Li, Q., Wang, F., Zhang, R., Wang, Y., Shi, H., Zhang, P. & Shen, Z., 2011. Far-field coseismic displacements associated with the 2011 Tohoku-Oki earthquake in Japan observed by Global Positioning System, Chinese Sci. Bull., 56.Google Scholar
  45. Wu, Y., Jiang, Z., Yang, G., Fang, Y. & Wang, W., 2009. The application and method of GPS strain calculation in whole mode using least square collection in sphere surface, Chinese J. Geophys, 52, 1707–1714.Google Scholar
  46. Xiong, X., Gao, R., Zhang, X., Li, Q. & Hou, H., 2011. The Moho Depth of North China and Northeast China Revealed by Seismic Detection, Acta Seismologica Sinica, 32, 36–56.Google Scholar
  47. Yamagiwa, A., Hatanaka, Y., Yutsudo, T. & Miyahara, B., 2006. Real-time capability of GEONET system and its application to crust monitoring, Bull. Geogr. Surv. Inst., 27–33.Google Scholar
  48. Yang, S., Nie, Z., Jia, Z. & Peng, M., 2011. Far-field Coseismic Surface Displacement Caused by the Mw9.0 Tohoku Earthquake, Geomatics and Information Science of Wuhan University, 36, 31–54.Google Scholar
  49. Zhang, P., Deng, Q., Zhang, G., Ma, J., Gan, W., Min, W., Mao, F. & Wang, Q., 2003. Active tectonic blocks and strong earthquakes in the continent of China, Science in China series D: Earth Science, 46.Google Scholar
  50. Zhang, P., Xu, X., Wen, X. & Ran, Y., 2008. Slip rates and recurrence interval of Longmen Shan active fault zone, and tectonic implications for eht mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China, Chinese J. Geophys., V51, 1066–1073.Google Scholar
  51. Zhao, D. & Hasegawa, A., 1993. P wave tomographic imaging of the crust and upper mantle beneath the Japan islands, J. Geophys. Res., 98, 4333–4354.Google Scholar
  52. Zhu, S. & Shi, Y., 2007. Error analysis of strian rates resulted from errors of GPS measurement, Journal of Geodesy and Geodynamics, 27, 52–57.Google Scholar
  53. Zhuang, J., Chang, C.-P., Ogata, Y. & Chen, Y.-I., 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models, J. Geophys. Res., 110.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.China Earthquake Networks CenterBeijingChina
  2. 2.Taiyuan University of TechnologyTaiyuanChina

Personalised recommendations