Pure and Applied Geophysics

, Volume 172, Issue 12, pp 3617–3638 | Cite as

Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas

  • Ocal NecmiogluEmail author
  • Nurcan Meral Özel


We identified a set of tsunami scenario input parameters in a 0.5° × 0.5° uniformly gridded area in the Eastern Mediterranean, Aegean (both for shallow- and intermediate-depth earthquakes) and Black Seas (only shallow earthquakes) and calculated tsunami scenarios using the SWAN-Joint Research Centre (SWAN-JRC) code (Mader 2004; Annunziato 2007) with 2-arcmin resolution bathymetry data for the range of 6.5—Mwmax with an Mw increment of 0.1 at each grid in order to realize a comprehensive analysis of tsunami wave heights from earthquakes originating in the region. We defined characteristic earthquake source parameters from a compiled set of sources such as existing moment tensor catalogues and various reference studies, together with the Mwmax assigned in the literature, where possible. Results from 2,415 scenarios show that in the Eastern Mediterranean and its connected seas (Aegean and Black Sea), shallow earthquakes with Mw ≥ 6.5 may result in coastal wave heights of 0.5 m, whereas the same wave height would be expected only from intermediate-depth earthquakes with Mw ≥ 7.0 . The distribution of maximum wave heights calculated indicate that tsunami wave heights up to 1 m could be expected in the northern Aegean, whereas in the Black Sea, Cyprus, Levantine coasts, northern Libya, eastern Sicily, southern Italy, and western Greece, up to 3-m wave height could be possible. Crete, the southern Aegean, and the area between northeast Libya and Alexandria (Egypt) is prone to maximum tsunami wave heights of >3 m. Considering that calculations are performed at a minimum bathymetry depth of 20 m, these wave heights may, according to Green’s Law, be amplified by a factor of 2 at the coastline. The study can provide a basis for detailed tsunami hazard studies in the region.


Tsunami hazard Eastern mediterranean Aegean sea Black sea 



We would like to thank the European Commission's Joint Research Centre (EC-JRC), in particular Alessandro Annunziato, for his support during the realization of the modeling database, which was possible through a collaborative agreement between the Kandilli Observatory and Earthquake Research Institute (KOERI) and EC-JRC. We would like to especially thank Roberto Basili [The Istituto Nazionale di Geofisica e Vulcanologia (INGV)] and Doğan Kalafat (KOERI) for their supports providing the SHARE active faults and seismogenic sources and KOERI Moment Tensor databases, respectively. We would also like to thank Prof. Ahmet Cevdet Yalciner for providing the earthquake source database compiled in TRANSFER Project ( and for his feedback throughout the study. We would like to thank Dr. Ceren Özer Sözdinler for her feedback and support in the quality control of the tsunami scenario database. We also would like thank Mustafa Comoglu from KOERI for his assisstance in IT-related issues concerning the tsunami scenario database and to Dr. Mehmet Yılmazer for his support in the creation of the TTT maps. Last but not least, we would like to express our sincere gratitude to two anonymous reviewers who considerably helped us in improving the manuscript. Maps are produced with Generic Mapping Tools (GMT; Wessel et al. 2013) and ArcMap 10 by Esri.


  1. Aksu, A. E., Hall, J., Yaltırak, C. 2005, Miocene to Recent tectonic evolution of the eastern Mediterranean: New pieces of the old Mediterranean puzzle, Marine Geology 221, 1–13.Google Scholar
  2. Alpar, B., 2009, “Vulnerability of Turkish Coasts to Accelerated Sea-Level Rise”, Geomorphology, 107(2009) 58–63.Google Scholar
  3. Alptekin, Ö., J. L. Nábalek, and N. Toksöz, 1986, “Source mechanism of the Bartin earthquake of September 3, 1968 in northwestern Turkey: Evidence for active thrust faulting at the southern Black Sea margin”, Tectonophysics, Vol. 122, Issues 1–2, Pages 73–88.Google Scholar
  4. Altinok, Y., B. Alpar, N. Ozer, and C. Gazioglu, 2005, “1881 and 1949 earthquakes at the Chios-Cesme Strait (Aegean Sea) and their relation to tsunamis”, Natural Hazards and Earth System Sciences, 5, 717–725.Google Scholar
  5. Altinok, Y., Alpar, B., Özer, N., and Aykurt, H. (2011), Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions, Nat. hazards Earth Syst. Sci., 11, 273–293.Google Scholar
  6. Ambraseys, N. 2009. Earthquakes in the Mediterranean and Middle East, Cambridge University Press, ISBN 978-0-521-87292-8.Google Scholar
  7. Ambraseys, N. N. and Synolakis C., 2010, “Tsunami Catalogues for the Eastern Mediterranean”, Revisited, Journal of Earthquake Engineering, 14, 3, 309–330.Google Scholar
  8. Annunziato, A. (2007). The Tsunami Assessment Modelling System by the Joint Research Centre. Science of Tsunami Hazards 26:2, 70–92.Google Scholar
  9. Barka, A., Reilinger, R., 1997. Active Tectonics of the eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geofisica XL (3), 586–608.Google Scholar
  10. Basili, R. Tiberti, M. M, Kastelic, V., Romano, F., Piatanesi, A., Selva, J. and Lorito, S. (2013). Integrating geologic fault data into tsunami hazard studies; Nat. Hazards Earth Syst. Sci., 13, 1025–1050.Google Scholar
  11. Bayrak, Y. and Bayrak, E. (2011), An Evaluation of Earthquake Hazard Potential for Different Regions in Western Anatolia Using the Historical and Instrumental Earthquake Data, Pure Appl. Geophys., Volume 169, Issue 10, pp 1859–1873.Google Scholar
  12. Beisel S., L. Chubarov, I. Didenkulova, E. Kit, A. Levin, E. Pelinovsky, Y. Shokin, and M. Sladkevich, 2009, “The 1956 Greek tsunami recorded at Yafo, Israel, and its numerical modeling”, Journal of Geophysıcal Research, vol. 114.Google Scholar
  13. Ben-Avraham Z, Garfunkel Z, Lazar M (2008) Geology and evolution of the southern Dead Sea fault with emphasis on subsurface structure. Annu Rev Earth Planet Sci 36:357–387.Google Scholar
  14. Benetatos C., A. Kiratzi, C. Papazachos, G. Karakaisis, 2004, “Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic arc”, Journal of Geodynamics, 37, 253–296.Google Scholar
  15. Bernardi F. (2004) Earthquake source parameters in the Alpine-Mediterranean region from surface wave analysis, Diss. ETH Nr. 15652, Ph.D. Thesis.Google Scholar
  16. Biju-Duval, B.; Letouzey, J. and Montadert, L., 1978. Structure and evolution of the Mediterranean basins. In: Hsue, K. and Montadert et al. (Editors), Initial Report of the Deep Sea Drillin project, Vol. 42, Part 1, pp. 951–984.Google Scholar
  17. Bohnhoff, M. Harjes, H-P and Meier, T. (2005) Deformation and stress regimes in the Hellenic subduction zone from focal Mechanisms Journal of Seismology (2005) 9: 341–366.Google Scholar
  18. Caputo R., C. Alexandros, P. Spyros, S. Sotiris, (2012), “The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece”, Annals of Geophysics, 55, 5.Google Scholar
  19. Constantinescu, L., Ruprechtova, L. and Eneso, D., 1966. Mediterranean-Alpine earthquake mechanisms and their seismotectonic implications. Geophys. J.R. Astron. Soc., 10: 347–368.Google Scholar
  20. CIESM (2011). Marine geo-hazards in the Mediterranean. N° 42 in CIESMWorkshop Monographs [F. Briand Ed.], 192 pages, Monaco.Google Scholar
  21. Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D., Drakatos, G. (1999), Microseismic activity and seismotectonics of Heraklion Area (central Crete Island, Greece), Tectonophysics 308, 237–248.Google Scholar
  22. Dewey, J. F., Pitman, W. C., Ryan, W. B. F. & Bonnin, J., 1973. “Plate tectonics and the evolution of the Alpine system”, Geological Society of America Bulletin, 84:3137–3180.Google Scholar
  23. Dineva S. (1993) Catalogue of Earthquakes in Bulgaria, 19811990, Bulg. Acad. Sci., Geophys. Inst., Seismol. Dep., 39 pp.Google Scholar
  24. Dominey-Howes, D. T. M., G. S. Humphreys, and P. P. Hesse, 2006, “Tsunami and palaeotsunami depositional signatures and their potential value in understanding the late-Holocene tsunami record”, The Holocene, vol. 16, 1095. doi: 10.1177/0959683606069400.
  25. Dotsenko, S. F. and Konovalov, A. V. (1996). Tsunami waves in the Black Sea in 1927: observations and numerical modeling (in Thermohydrodynamics of the Ocean) Phys. Oceanogr.,Vol. 7, No. 6, pp. 389–401 (1996).Google Scholar
  26. Dotsenko, S. F. and A. V. Ingerov, 2007, “Characteristics of Tsunami Waves In The Black Sea According to the Data of Measurements”, Physical Oceanography, Vol. 17, No. 1.Google Scholar
  27. Dotsenko, S. F. and A. V. Ingerov, 2010, “Numerical Modeling Of The Propagation And Strengthening Of Tsunami Waves Near The Crimean Peninsula And The Northeast Coast Of The Black Sea”, Physical Oceanography, Vol. 20, No. 1, 2010.Google Scholar
  28. Dziewonski, A. M., Chou T. A. and J. H. Woodhouse. (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825–2852 and subsequent quarterly papers on Phys. Earth Planet. Int.Google Scholar
  29. Ebeling, C. W., Okal, E., Kalligeris, N., Synolakis, C. E. (2012) Modern seismological reassessment and tsunami simulation of historical Hellenic Arc earthquakes; Tectonophysics 530531, 225–239.Google Scholar
  30. Eva C., Riuscetti M. and D. Slejko. (1988) Seismicity of the Black Sea Region, Boll. Geof. Teor. Appl., XXX, 117–118, 53–66.Google Scholar
  31. Eyidoğan, H., J. A. Jackson. (1985), “A seismological study of normal faulting in the Demirci, Alasehir and Gediz earthquakes of 196970 in western Turkey: implications for the nature and geometry of deformation in the continental crust”, Geophysical Journal of the Royal Astronomical Society, 81, 569–607.Google Scholar
  32. Fokaefs, A. and Papadopoulos, G. A. (2007). Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea. Natural Hazards 40:503–526.Google Scholar
  33. Ganas, A. and T. Parsons, 2009, “Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift”, Journal of Geophysical Research, vol. 114.Google Scholar
  34. Garfunkel, Z., 2004. Origin of the Eastern Mediterranean basin: a reevaluation. Tectonophysics 391, 11–34.Google Scholar
  35. Gorur, N. (1997) Crateceous syn- to postrift sedimantation on the Southern Continental Margin of the Western Black Sea Basin, in Regional and Petroleum Geology of the Black Sea and Surrounding Region, edited by A. G. Robin- son, American Association of Petroleum Geologists (AAPG), AAPG Memoir 68, pp. 227–240.Google Scholar
  36. Hall, J., Aksu, A., Yaltırak, C., Winsor, J., 2009. Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of the Hellenic and Cyprus arcs, eastern Mediterranean. Marine Geology 258, 1–23.Google Scholar
  37. Hanks, T. C. and Kanamori, H. (1979). A moment magnitude scale Journal of Geophysical Research: Solid Earth, Volume 84, Issue B5, pages 2348–2350.Google Scholar
  38. Hatzfeld, D., Besnard, M., Makropoulos, K. and Hatzidimitriou, P. (1993), Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int. 115, 799–818.Google Scholar
  39. Heuret, A., S. Lallemand, F. Funiciello, C. Piromallo, and C. Faccenna (2011), Physical characteristics of subduction interface type seismogenic zones revisited, Geochem. Geophys. Geosyst., Volume 12, Issue 1, January 2011.Google Scholar
  40. Howe, T. M. and P. Bird, 2010, “Exploratory models of long-term crustal flow and resulting seismicity across the Alpine-Aegean orogen”, Tectonics, vol. 29, 4.Google Scholar
  41. Hyndman, R. D., Yamano, M. & Oleskevich, D. A., 1997. The seismogenic zone of subduction thrust faults, Island Arcs, 6, 244–260.Google Scholar
  42. Jolivet, L. Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J-P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L., Driussiü, O. (2013), Aegean tectonics: Strain localisation, slab tearing and trench retreat, Tectonophysics 597–598, 1–33.Google Scholar
  43. Jost, M. L., O. Knabenbauer, J. Cheng, H-P. Harjes, 2002, “Fault plane solutions of microearthquakes and small events in the Hellenic arc”, Tectonophysics, 356, 87–114.Google Scholar
  44. Kalafat, K., Kekovali, K., Gunes, Y., Yilmazer, M., Kara, M., Deniz, P., Berberoglu, M. (2009). A catalogue of Source Parameters of Moderate and Strong Earthquakes for Turkey and its Surrounding Area (1938–2008), Bogazici University Press, ISBN 978-975-518-303-9.Google Scholar
  45. Kanamori, H. (1977) The energy release in great earthquakes, Journal of Geophysical Research:Solid Earth and Planets, Volume 82, Issue 20, pages 2981–2987.Google Scholar
  46. Karabulut, H., Z. Roumelioti, C. Benetatos, A.K. Mutlu, S. Özalaybey, M. Aktar and A. Kiratzi, 2006, “A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (northern Aegean Sea): Seismological evi- dence for the western continuation of the Ganos fault”, Tectonophysics, 412, 195–216.Google Scholar
  47. Kiratzi, A. A. and C. B. Papazachos. 1995. Active Deformation of the Shallow Part of the Subducting Lithospheric Slab in the Southern Aegean. J. Geodyn. 19, 65–78.Google Scholar
  48. Kiratzi, A., E. Louvari, 2003, “Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database”, Journal of Geodynamics, 36, 251–274.Google Scholar
  49. Koravos, G. Ch., I. G. Main, T. M. Tsapanos and R. M. W. Musson, 2003, “Maximum earthquake magnitudes in the Aegean area constrained by tectonic moment release rates”, Geophysical Journal International, 152, 94–112.Google Scholar
  50. Kreemer, C. and N. Chamot-Rooke, 2004, “Contemporary kinematics of the southern Aegean and the Mediterranean Ridge”, Geophysical Journal International, 157, 1377–1392.Google Scholar
  51. Le Pichon, X. and J. Angelier, 1979. The Hellenic Arc and Trench system: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area. Tectonophysics, 60, 1–42.Google Scholar
  52. Leonard, M., 2010, “Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release”, Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp. 1971–1988.Google Scholar
  53. Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A. and Valensise, G. (2008). Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy; Journal of Geophysical Research, Vol. 113, B01301.Google Scholar
  54. Løvholt, F., S. Glimsdal, C. B. Harbitz, N. Zamora, F. Nadim, P. Peduzzi, H. Dao, H. Smebye, 2012, “Tsunami hazard and exposure on the global scale”, Earth-Science Reviews, 110, 58–73.Google Scholar
  55. Mader, C. L. (2004). Numerical Modeling of Water Waves, CRC Press; 2nd edition, ISBN 0-8493-2311-8.Google Scholar
  56. McClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gürkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Şanlı, H. Seeger, A. Tealeb, M.N. Toksöz and G. Veis. 2000. Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719.Google Scholar
  57. McClusky, S., R. Reilinger, S. Mahmoud, D. Ben-Sarı and A. Tealeb, 2003, “GPS constraints on Africa (Nubia) and Arabia plate motions”, Geophysical Journal International, 155, 126–138.Google Scholar
  58. McKenzie, D. P. (1970). Plate Tectonics of the Mediterranean Region. Nature 226, 239–243.Google Scholar
  59. McKenzie, D. P., (1972), “Active tectonics of the Mediterranean region”, Geophys. J. R. Ast. Soc. 30, 109–185.Google Scholar
  60. McKenzie, D. P., (1978), “Active tectonics of the AlpineHimalayan belt: the Aegean Sea and surrounding regions”, Geophysical Journal of the Royal Astronomical Society, 55, 217–254.Google Scholar
  61. Meier, T., Becker, D., Endrun, B., Rische, M., Bohnhoff, M., Stöckhert, B. and Harjes, H.-P. (2007) A model for the Hellenic subduction zone in the area of Crete based on seismological investigations, Geological Society, London, Special Publications 2007, v. 291; pp. 183–199.Google Scholar
  62. Mitsakaki, C., M. G. Sakellariou, D. Tsinas, 2013, “A study of the crust stress field for the Aegean region (Greece)”, Tectonophysics, Vol. 597598, 50–72.Google Scholar
  63. Mitsoudis, D. A., E. T. Flour, N. Chrysoulakis, Y. Kamarianakis, E. A. Okal, C. E. Synolakis, 2012, “Tsunami hazard in the southeast Aegean Sea”, Coastal Engineering, 60, 136–148.Google Scholar
  64. Moratto, L., B. Orlecka-Sikora, G. Costa, P. Suhadolc, Ch. Papaioannou, C. B. Papazachos, 2007, “A deterministic seismic hazard analysis for shallow earthquakes in Greece”, Tectonophysics, 442, 66–82.Google Scholar
  65. Necmioğlu, Ö. and Özel., N. M. (2014). An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean. Oceanography 27(2): 76–85.Google Scholar
  66. Nikishin, A. M., Korotaev, M. V., Ershov, A. V., Brunet, M-F. (2003). The Black Sea basin: tectonic history and NeogeneQuaternary rapid subsidence modelling, Sedimentary Geology 156,149–168.Google Scholar
  67. Okada, Y., 1985, “Surface Deformation due to Shear and Tensile Faults in a Half-Space”, Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
  68. Okal, E. A., C. E. Synolakis, B. Uslu, N. Kalligeris and E. Voukouvalas, 2009, “The 1956 earthquake and tsunami in Amorgos, Greece”, Geophysical Journal International, 178, 1533–1554.Google Scholar
  69. Ozel, M. N., Necmioglu, O., Yalciner, A.C., Kalafat, D., Mustafa, E. (2011). Tsunami hazard in the Eastern Mediterranean and its connected seas: Toward a Tsunami warning center in Turkey, Soil Dynamics and Earthquake Engineering, Volume 31, Issue 4, April 2011, Pages 598–610.Google Scholar
  70. Papadimitriou, E. E., and Karakostas, V. G. (2008) Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc; Acta Geophysica, Volume 56, Issue 2, pp. 293–312.Google Scholar
  71. Papadopoulos, G. (2011), The Seismic History of Crete, Ocelatos Publications, ISBN 978-960-9499-68-2.Google Scholar
  72. Papadopoulos, G. A., G. Diakogianni, A. Fokaefs, and B. Ranguelov, 2011, “Tsunami hazard in the Black Sea and the Azov Sea: a new tsunami catalogue”, Natural Hazards Earth System Science, 11, 945–963.Google Scholar
  73. Papadopoulos, G. A, Gràcia, E., Urgeles, R., Sallares, V., De Martini, P. M., Pantosti, D., M. González, Yalciner, A. C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T., Papageorgiou, A. (2014). Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology 354 (2014) 81–109.Google Scholar
  74. Papaioannou, Ch. A. and B. C. Papazachos, 2000, “Time-Independent and Time-Dependent Seismic Hazard in Greece Based on Seismogenic Sources, Bulletin of the Seismological Society of America, 90, 1, 22–33.Google Scholar
  75. Papazachos, B. C., 1990. Seismicity of the Aegean and surrounding area. Tectonophysics 178, 287–308.Google Scholar
  76. Papazachos, B. C., Ch. Koutitas, P. M. Hatzidimitriou, B. M., Karakostas and C. A. Papaioannou, 1986, “Tsunami hazard in Greece and the surrounding area”, Annales Geophysicae, 4, 79–90.Google Scholar
  77. Papazachos, B. C., 1996, “Large Seismic Faults in the Hellenic Arc”, Annali di Geofisica, Vol. XXXIX, No.5.Google Scholar
  78. Papazachos, B., A. Kiratzi, E. Paradimitriou, 1991, “Regional focal mechanism for earthquakes in the Aegean area”, Pure Applied Geophysics, 4, 405–419.Google Scholar
  79. Papazachos, B. C. and Papaioannou, Ch. A. 1993. Long-term earthquake prediction in the Aegean area based on a time and magnitude predictable model. Pageoph, 140, 593–612, 1993.Google Scholar
  80. Papazachos, B. C. and Ch. A. Papaioannou, 1999, “Lithospheric boundaries and plate motions in the Cyprus area”, Tectonophysics, 308, 193–204.Google Scholar
  81. Pararas-Carayannis, G. (2011). The earthquake and tsunami of July 21, 365 AD in the Eastern Mediterranean SeaA review of Impact on the Ancient WorldAssessment of Recurrence and Future Impact. Science of Tsunami Hazards, Vol. 30, No. 4, page 253.Google Scholar
  82. Parke, G., (2001), Active Tectonics and Sedimentary Process in Western Turkey, Ph.D. Dissertation, University of Cambridge.Google Scholar
  83. Pilidou, S., Priestley, K., Jackson, J., and Maggi, A. (2004). The 1996 Cyprus earthquake: a large, deep event in the Cyprean Arc. Geophys. J. Int. 158, 85–97.Google Scholar
  84. Pondrelli,S., Morelli, A., Ekström, G. (2004). European-Mediterranean regional centroid-moment tensor catalog: solutions for years 2001 and 2002. Physics of the Earth and Planetary Interiors 145, 127–147.Google Scholar
  85. Pondrelli, S., Salimbenia, S., Morelli, A., Ekström, G., Postpischl, L., Vannucci, G., Boschi, E. (2011) EuropeanMediterranean Regional Centroid Moment Tensor catalog: Solutions for 20052008, Physics of the Earth and Planetary Interiors 185 (2011) 74–81.Google Scholar
  86. Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., Dziewonski, A.M. (2002) EuropeanMediterranean regional centroid-moment tensors: 19972000, Physics of the Earth and Planetary Interiors 130, 71–101.Google Scholar
  87. Radulian M., Popescu E., Bala A. and A. (2002) Utale Catalog of fault plane solutions for the earthquakes occurred on the Romanian territory, Rom. Journ. Phys., 47, 663–685.Google Scholar
  88. Ranguelov, B. and D. Gospodinov, 1994, “Seismic activity after the earthquake of 31 March, 1901 in the Shabla-Kaliakra zone (in Bulgarian)”, Bulgarian Geophysical Journal, 20, 44–49.Google Scholar
  89. Rastsvetaev, L. M., 1987. Tectono-dynamical environments of the Great Caucasus Alpine structure origin. In: Milanovsky, E. E., Koronovsky, N. V. (Eds.), Geology and Mineral Resources of the Great Caucasus. Nauka, Moscow, pp. 69–96. in Russian.Google Scholar
  90. Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O., Sanli, I. (1997). Global positioning system measurements of present-day crustal move- ments in the ArabiaAfricaEurasia plate collision zone. Journal of Geophysical Research 102 (B5), 9983–9999.Google Scholar
  91. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F. Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud,S., Sakr,K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren,E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi,R., and Karam, G. (2006), GPS constraints on continental deformation in the Africa-Arabia- Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research, Vol. 111, B05411.Google Scholar
  92. Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. (2010), Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics 488, 22–30.Google Scholar
  93. Robertson, A. H. F., Dixon, J. E., 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean, Geological Evolution of the Eastern Mediterranean. Geol. Soc. Spec. Publ. London, vol. 17, pp. 1–74.Google Scholar
  94. Robertson, A. H. F. and Mountrakis, D. (2006) Tectonic development of the Eastern Mediterranean region: an introduction, Geological Society, London, Special Publications 2006; v. 260; p. 1–9.Google Scholar
  95. Saatçılar, R., Ergintav, S., Demirbağ, E., Inan, S. (1999), Character of active faulting in the North Aegean Sea, Marine Geology 160, 339–353.Google Scholar
  96. Salamon, A., A. Hofstetter, Z. Garfunkel, and H. Ron, 2003, “Seismotectonics of the Sinai subplate: the Eastern Mediterranean region”, Geophysical Journal International, 155, 149–173.Google Scholar
  97. Salamon, A., Rockwell, T., Ward, S. N., Guidoboni, E., and Comastri, A., 2007, Tsunami hazard evaluation of the Eastern Mediterranean: Historical analysis and selected modeling: Seismological Society of America Bulletin, v. 97, p. 705–724.Google Scholar
  98. Saleh, S. (2013), 3D Crustal and Lithospheric Structures in the Southeastern Mediterranean and Northeastern Egypt, Pure Appl. Geophys. 170, 2037–2074.Google Scholar
  99. Satake, K. 2011. Unforecasted Earthquake and Forgotten Tsunamis: Lessons from 2011 Tohoku Event. American Geophysical Union, Fall Meeting 2011, Abstract #NH12A-05.Google Scholar
  100. Sboras, S., Pavlides, S., Caputo, R., Chatzipetros, A., Michailidou, A., Valkaniotis., A. and Papathanasiou, G. (2011). Improving resolution of seismic hazard estimates for critical facilities: The Database of Greek Crustal Seismogenic Sources in the Frame of the SHARE Project. Proceedings of the 30° Convegno Nazionale GNGTS, 14–17 November, 2011, Trieste, Extended Abstracts, 232–235.Google Scholar
  101. Scholz, C. H., 1998. Earthquakes and friction laws. Nature, 391, 37–42.Google Scholar
  102. Shaw, B., Ambraseys, N. N., England, P. C., Floyd, M. A., Gorman, G. J, Higham, T. F. G., Jackson, J. A., Nocquet, J.-M., Pain, C. C., and Piggott, M. D. (2008). Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake; Nature Geoscience Vol. 1 APRIL 2008.Google Scholar
  103. Shaw, B. and Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International 181, 966–984.Google Scholar
  104. Showstack, R. (2014). Fukushima Nuclear Accident Report Calls for More Focus on Threats From Extreme Events. Eos, Vol. 95, No. 31.Google Scholar
  105. Snopek, K., Meier, T., Endrun, B., Bohnhoff, M., Casten, U. (2007), Comparison of gravimetric and seismic constraints on the structure of the Aegean lithosphere in the forearc of the Hellenic subduction zone in the area of Crete, Journal of Geodynamics.Google Scholar
  106. Soloviev, S. L., 1990, “Tsunamigenic zones in the Mediterranean sea”, Natural Hazards, 3, 183–202.Google Scholar
  107. Soloviev, S. L., Solovieva, O. N., Go, C. N., Kim, K. S., Shchetnikov, N. A. (2000). Tsunamis in the Mediterranean Sea – 2000 B.C.–2000 A.D., Kluwer Academic Publishers, 237 pp.Google Scholar
  108. Sørensen, M.B., M. Spada, A. Babeyko, S. Wiemer and G. Grünthal, 2012, “Probabilistic tsunami hazard in the Mediterranean Sea”, Journal of Geophysical Research, vol. 117, B01305.Google Scholar
  109. Stampfli, G. M., Borel, G. D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic ocean isochrons. Earth Planet. Sci. Lett. 196, 17–33.Google Scholar
  110. Stein, S., Geller , R.J., Liu, M. 2012. Why Earthquake Hazard Maps Often Fail and What to do About it? Tectonophysics 562563 (2012) 1–25.Google Scholar
  111. Stern, R. J., 2002. Subduction zones, Rev. Geophys., 40, 3–1.Google Scholar
  112. Strobl, M., R. Hetzela, C. Fassoulas and P. W. Kubik, 2014, A Long-Term Rock Uplift Rate for Eastern Crete and Geodynamic Implications for the Hellenic Subduction Zone, Journal of Geodynamics, 78 (2014) 21–31.Google Scholar
  113. Şengör, A. M. C., N. Görür, F. Saroğlu, 1985, Strike–slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: K. T. Biddle, N. Christie-Blick (Eds.), Strike – slip Deformation, Basin Formation and Sedimentation, Society of Economic Paleontologists and Mineralogists Special Publication, 37, 227–264.Google Scholar
  114. Tari, E. Sahin, M., Barka, A., Reilinger, R., King, R.W., McClusky, S., Prilepin, M. (2000) Active tectonics of the Black Sea with GPS, Earth Planets Space, 52, 747–751.Google Scholar
  115. Taymaz, T., J. A. Jackson and R. Westaway, 1990, “Earthquake mechanisms in the Hellenic trench near Create”, Geophysical Journal International, 102, 695–731.Google Scholar
  116. Taymaz, T., J. A. Jackson and D. Mckenzie, 1991, “Active tectonics of the north and central Aegean Sea”, Geophysical Journal International, 106, 433–490.Google Scholar
  117. Tinti, S., A. Armigliato, G. Pagnoni, and F. Zaniboni. (2005). Scenarios of giant tsunamis of tectonic origin in the Mediterranean, ISET J. Earthquake Technol., 42, 171–188.Google Scholar
  118. Tinti, S., Armigliato, A., Pagnoni, G., Zaniboni, F. and Tonini, R. (2011). Tsunamis in the Euro-Mediterranean region: emergency and long term counter measures. In CIESM, 2011. Marine geo-hazards in the Mediterranean. N° 42 in CIESMWorkshop Monographs [F. Briand Ed.], 192 pages, Monaco.Google Scholar
  119. Udias A., Buforn E. and J. Ruiz De Gauna (1989). Catalogue of Focal Mechanisms of European Earthquakes. Department of Geophysics, Universidad Complutense, Madrid.Google Scholar
  120. Vannucci, G. and Gasperini, P. (2004). The new release of the database of Earthquake Mechanisms of the Mediterranean Area (EMMA Version 2), Annals of Geophysics, Supplement to V. 47, N.1, 307–334.Google Scholar
  121. Volvovsky, B. S., 1989. Seismicity. In: Beloussov, V. V., Volvovsky, B. S. (Eds.), Structure and Evolution of the Earth’s Crust and Upper Mantle of the Black Sea. Nauka, Moscow, pp. 95–97. in Russian.Google Scholar
  122. Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe, Generic Mapping Tools: Improved version released, EOS Trans. AGU, 94, 409–410, 2013.Google Scholar
  123. Yalçıner, A. C., Pelinovsky, E., Talıpova, T., Kurkın, A., Kozelkov, A. & Zaitsev, A. 2004. Tsunami in the Black Sea: comparison of the historical, instrumental and numerical data. Journal of Geophysical Research, 109, C12023, doi: 10.1029/2003JC002113.
  124. Yolsal, S., T. Taymaz and A. C. Yalcıner, 2007, “Understanding tsunamis, potential source regions and tsunami-prone mechanisms in the Eastern Mediterranean”, Geological Society,.Google Scholar
  125. Yolsal-Çevikbilen, S. and T. Taymaz, 2012, “Earthquake Source Parameters Along the Hellenic Subduction Zone and Numerical Simulations of Historical Tsunamis in the Eastern Mediterranean”, Tectonophysics, 536537, 61–100.Google Scholar
  126. London, Special Publications, 291, 201–230.Google Scholar
  127. Zamora, N., Franchello, G., and Anunziato, A. (2014). Validation of the JRC Tsunami Propagation and Inundation Codes; Science of Tsunami Hazards, Volume 33, Number 2, Pages 112–132.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Kandilli Observatory and Earthquake Research InstituteBoğaziçi UniversityIstanbulTurkey

Personalised recommendations