Advertisement

Pure and Applied Geophysics

, Volume 172, Issue 12, pp 3281–3312 | Cite as

Deep-Ocean Measurements of Tsunami Waves

  • Alexander B. RabinovichEmail author
  • Marie C. Eblé
Article

Abstract

Deep-ocean tsunami measurements play a major role in understanding the physics of tsunami wave generation and propagation, and in improving the effectiveness of tsunami warning systems. This paper provides an overview of the history of tsunami recording in the open ocean from the earliest days, approximately 50 years ago, to the present day. Modern tsunami monitoring systems such as the self-contained Deep-ocean Assessment and Reporting of Tsunamis and innovative cabled sensing networks, including, but not limited to, the Japanese bottom cable projects and the NEPTUNE-Canada geophysical bottom observatory, are highlighted. The specific peculiarities of seafloor longwave observations in the deep ocean are discussed and compared with observations recorded in coastal regions. Tsunami detection in bottom pressure observations is exemplified through analysis of distant (22,000 km from the source) records of the 2004 Sumatra tsunami in the northeastern Pacific.

Keywords

Tsunami measurements bottom pressure bottom cable stations tsunameter DART stations sea level long waves tsunami spectra signal extraction longwave background noise 

Notes

Acknowledgments

We gratefully acknowledge the Japan Agency for Marine Earth Science and Technology (JAMSTEC) and specific agency researchers H. Matsumoto and K. Kawaguchi for the information provided on Japanese cable stations. We thank Drs. Eddie Bernard (NOAA/PMEL, Seattle, WA) and Derek Goring (Mulgor Consulting, Christchurch, NZ) for their valuable comments and suggestions. We especially thank Dr. George Mungov (National Geophysical Data Center, Boulder, CO) for his advice and assistance with DART data processing. Russian Science Foundation, Grant 14-50-00095, provided partial support for the contribution of A.B.R. This is NOAA Pacific Marine Environmental Laboratory contribution number 4297.

References

  1. Aucan, J., and Ardhuin, F. (2013), Infragravity waves in the deep ocean: An upward revision, Geophys. Res. Lett., 40, 3435–3439; doi: 10.1002/grl.50321.
  2. Barnes, C., Best, M., Johnson, F., Phibbs, P., and Pirenne, B. (2008), Transforming the ocean sciences through cabled observatories, Marine Technology Reporter, October 2008, 30–36.Google Scholar
  3. Bernard, E.N., González, F.I., Meinig, C., and Milburn, H.B. (2001), Early detection and real-time reporting of deep-ocean tsunamis, Proc. Int. Tsunami Symp. 2001, Seattle, WA, pp. 97–108.Google Scholar
  4. Beltrami, G.M. (2011), Automatic, real-time detection and characterization of tsunamis in deep-sea level measurements. Ocean Eng. 38(14–15), 1677–1685; doi: 10.1016/j.oceaneng.2011.07.016.
  5. Beltrami, G. M. and Di Risio, M. (2011), Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coastal Eng. 58(11), 10621071; doi: 10.1016/j.coastaleng.2011.06.004.
  6. Bressan, L., and Tinti, S. (2012), Detecting the 11 March 2011 Tohoku tsunami arrival on sea-level records in the Pacific Ocean: application and performance of the Tsunami Early Detection Algorithm (TEDA), Nat. Hazards Earth Syst. Sci. 12, 1583–1606; doi: 10.5194/nhess-12-1583-2012.
  7. Di Risio, M. and Beltrami, G.M. (2014), Algorithms for automatic, real-time tsunami detection in wind-wave measurements: using strategies and practical aspects, Procedia Eng. 70, 545–554.Google Scholar
  8. Djumagaliev, V.A., and Rabinovich, A.B. (1993), Long wave investigation at the shelf and in the bays of the South Kuril Islands, J. Korean Soc. Coast. Ocean Eng., 5(4), 318–328.Google Scholar
  9. Djumagaliev, V.A., Kulikov, E.A., and Soloviev, S.L. (1993), Analyses of ocean level oscillations in Malokurilskaya Bay caused by tsunami on February 16, 1991, Sci. Tsunami Hazards, 11(1), 47–55, 1993.Google Scholar
  10. Dykhan, B.D., Jaque, V.M., Kulikov, E.A., et al. (1981), The first registration of tsunamis in the open ocean, Dokl. Akad. Nauk USSR, 257(5), 1088–1092. [in Russian].Google Scholar
  11. Dykhan, B.D., Jaque, V.M., Kulikov, E.A., et al. (1983), Registration of tsunamis in the open ocean, Mar. Geodesy, 6. 303–310.Google Scholar
  12. Eblé, M.C., and González, F.I. (1991), Deep-ocean bottom pressure measurements in the Northeast Pacific, J. Atmos. Oceanic Technol., 8, 221–233.Google Scholar
  13. Efimov, V.V., Kulikov, E.A., Rabinovich, A.B. and Fine, I.V. (1985), Ocean Waves in Boundary Regions, Gidrometeoizdat, Leningrad, pp 280. [in Russian].Google Scholar
  14. Eva, C. and Rabinovich, A.B. (1997), The February 23, 1887 tsunami recorded on the Ligurian coast, Western Mediterranean, Geophys. Res. Lett., 24(17), 2211–2214.Google Scholar
  15. Filloux, J.H. (1982), Tsunami recorded on the open ocean floor, Geophys. Res. Lett. 9(1), 25–28.Google Scholar
  16. Filloux, J.H. (1983), Pressure fluctuations on the open ocean floor off the Gulf of California: Tides, earthquakes, tsunamis, J. Phys. Oceanogr. 13(5), 783–796.Google Scholar
  17. Filloux, J.H., Luther, D.S., and Chave, A.D. (1991), Update on seafloor pressure and electric field observations from the north-central and northeastern Pacific: Tides, infratidal fluctuations, and barotropic flow, In: Tidal Hydrodynamics (Ed. B.B. Parker), Wiley, New York, pp. 617–639.Google Scholar
  18. Fujii, Y., and Satake, K. (2008), Tsunami sources of November 2006 and January 2007 Great Kuril earthquakes, Bull. Seismol. Soc. Am., 98, 1559–1571.Google Scholar
  19. Gica, E., Spillane, M., Titov, V.V., Chamberlin, C., and Newman, J.C. (2008), Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL-139, 89 pp.Google Scholar
  20. González, F.I., and Kulikov, E.A. (1993), Tsunami dispersion observed in the deep ocean. In: Tsunamis in the World, (Ed. S. Tinti), Kluwer Academic, Dordrecht, pp. 7–16.Google Scholar
  21. González, F.I., Mader, C.L., Eblé, M.C., and Bernard, E.N. (1991), The 198788 Alaskan Bight tsunamis: Deep ocean data and model comparisons, Nat. Hazards, 4(1/2), 119–139.Google Scholar
  22. González, F.I., Bernard, E.N., Meinig, C. et al. (2005), The NTHMP tsunameter network, Nat. Hazards, 35(1), 25–39.Google Scholar
  23. Goring, D.G. (2008), Extracting long waves from tide-gauge records, J. Waterw. Port Coast. Ocean Eng. 134(5), 306–312.Google Scholar
  24. Hirata, K., Aoyagi, M., Mikada, H. et al. (2002), Realtime geophysical measurements on the deep seafloor using submarine cable in the Southern Kurile Subduction Zone, IEEE J. Oceanic Eng., 27, 170–181.Google Scholar
  25. Honda, K., Terada, T., Yoshida, Y., and Isitani, D. (1908), An investigation on the secondary undulations of oceanic tides, J. College Sci., Imper. Univ. Tokyo, 108 pp.Google Scholar
  26. Jaque, V.M., and Soloviev, S.L. (1971), Remote registration of tsunami type weak waves on the shelf of the Kuril Islands, Dokl. Akad. Nauk USSR, 198(4), 816–817. [in Russian].Google Scholar
  27. Joseph, A. (2011), Tsunamis: Detection, Monitoring and Early-Warning Technologies, Elsevier, Amsterdam, 436 pp.Google Scholar
  28. Kaneda, Y. (2011),.Advanced ocean floor network system for mega thrust earthquakes and tsunamis, Proc. Underwater Techn. 2011 IEEE Symp. doi: 10.1109/UT.2011.5774149.
  29. Karl, D. M. (2004), UH and the Sea: The Emergence of Marine Expeditionary Research and Oceanography as a Field of Study at the University of Hawaii at Manoa, University of Hawaii, Honolulu, SOEST Report 04-01.Google Scholar
  30. Kawaguchi, K., Kaneda, Y., Araki, E. et al. (2012), Reinforcement of seafloor surveillance infrastructure for earthquake and tsunami monitoring in western Japan, Proc. Oceans2012 Mts/Ieee Yeosu, May 21–24, 2012. Yeosu, Republic of Korea.Google Scholar
  31. Kovalev, P.D., Rabinovich, A.B., and Shevchenko, G.V. (1991), Investigation of long waves in the tsunami frequency band on the southwestern shelf of Kamchatka, Nat. Hazards, 4(2/3), 141–159.Google Scholar
  32. Kulikov, E.A. (1990), Sea level measurement and tsunami forecasting, Sov. Meteorol. Hydrol., 6, 61–68.Google Scholar
  33. Kulikov, E.A., and González, F.I. (1996), Recovery of the shape of a tsunami signal at the source from measurements of oscillations in the ocean level by a remote hydrostatic pressure sensor, Trans. (Doklady) Russian Acad. Sci., Earth Sci. Sect. 345A, 585–591.Google Scholar
  34. Kulikov, E.A., Pavlenko, V.G., Lappo, S.S., and Rabinovich, A.B. (1979), The Second Soviet–American Expedition to Study Tsunamis in the Open Ocean, Oceanology, 19(2), 235–236.Google Scholar
  35. Kulikov, E.A.; Rabinovich, A.B., Spirin, A.I., Poole, S.L., and Soloviev, S.L. (1983), Measurement of tsunamis in the open ocean, Mar. Geodesy 6(3–4), 311–329.Google Scholar
  36. Lander, J.F., Lockridge, P.A., and Kozuch, M.J. (1993), Tsunamis affecting the West Coast of the United States, 18061992. Boulder, Colorado, National Geophysical Data Center, 242 pp.Google Scholar
  37. Lappo, S.S., and Soloviev, S.L. (1976), The First Soviet American Open-Ocean Tsunami Expedition, Oceanology, 16(4), 412–413.Google Scholar
  38. Levin, B., and Nosov, M. (2009), Physics of Tsunamis, Springer, Dordrecht, 327 pp.Google Scholar
  39. Matsumoto, H., and Kaneda, Y. (2009), Review of recent tsunami observation by offshore cabled observatory, J. Disaster Res. 4(6), 1–9.Google Scholar
  40. Matsumoto, H., and Kaneda, Y. (2013), Some features of bottom pressure records at the 2011 Tohoku earthquake—Interpretation of the far-field DONET data. Proc. 11th SEGJ Intern. Symp.Google Scholar
  41. Mofjeld, H.O. (1997), Tsunami detection algorithm, NOAA/PMEL, Seattle, WA. Only available online at http://nctr.pmel.noaa.gov/tda_documentation.html.
  42. Mofjeld, H.O. (2009), Tsunami measurements, In: The Sea, Vol. 15, Tsunamis, (Eds. A. Robinson and E. Bernard), Harvard University Press, Cambridge, USA, pp. 201–235.Google Scholar
  43. Mofjeld, H.O., Whitmore, P.M., Eble, M.C., González, F.I., and Newman, J.C. (2001), Seismic-wave contributions to bottom pressure fluctuations in the North PacificImplications for the DART tsunami array, Proc. Int. Tsunami Symp. 2001, Seattle, WA, CD, pp.97–108.Google Scholar
  44. Mofjeld, H.O., González, F.I., and Eblé, M.C. (1996), Subtidal bottom pressure observed at Axial Seamount in the northeastern continental margin of the Pacific Ocean, J. Geophys. Res. 101(C7), 16381–16390.Google Scholar
  45. Mungov, G., Eblé, M., and Bouchard, R. (2013), DART ® tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations, Pure Appl. Geophys., 170, 1369–1384; doi: 10.1007/s00024-012-0477-5.
  46. Munk, W.H., and Bullard, E.C. (1963), Patching the long-wave spectrum across the tides, J. Geophys. Res. 68(12), 3627–3634.Google Scholar
  47. Munk, W.H., Zetler, B., and Groves, G.W. (1965), Tidal cusps, Geophys. J. R. Astron. Soc. 10(2), 211–219.Google Scholar
  48. Nowroozi, A.A. (1972), Long-term measurements of pelagic tidal height off the coast of northern California, J. Geophys. Res., 77(3), 434–443.Google Scholar
  49. Nowroozi, A.A., Sutton, G., and Auld, B. (1966), Oceanic tides recorded on the sea floor, Ann. Geophys., 22(3), 512–517.Google Scholar
  50. Okada, M. (1993), Tsunami observation by ocean bottom pressure gauge, In: Proc. IUGG/IOC Int. Tsunami Symp., Wakayama, Japan, pp. 385–396.Google Scholar
  51. Okada, M. (1995), Tsunami observation by ocean bottom pressure gauge. In: Tsunami: Progress in Prediction, Disaster Prevention and Warning (Eds. Y. Tsuchiya and N. Shuto), Kluwer, Dordrecht, pp. 287–303.Google Scholar
  52. Percival, D.B., Denbo, D.W., Eblé, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2011), Extraction of tsunami source coefficients via inversion of DART ® buoy data, Nat. Hazards, 58(1), 567–590; doi: 10.1007/s11069-010-9688-1.
  53. Poole, S.L., Rabinovich, A.B., Spielvogel, L.Q., and Harvey R.R. (1980), Study of ocean tides in the region of the Kuril-Kamchatka and Japan Trenches, Oceanology 20(6), 655–659.Google Scholar
  54. Poplavsky, A.A., Kulikov, E.A., and Poplavskaya, L.N. (1988), Methods and Algorithms of Automatic Tsunami Warning, Moscow, Nauka, 128 pp. [in Russian].Google Scholar
  55. Pugh, D., and Woodworth, P. (2014), Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, Cambridge University Press, 395 pp.Google Scholar
  56. Rabinovich, A.B. (1993), Long Ocean Gravity Waves: Trapping, Resonance, and Leaking, Gidrometeoizdat, Leningrad, 325 pp. [in Russian].Google Scholar
  57. Rabinovich, A.B. (1997), Spectral analysis of tsunami waves: Separation of source and topography effects, J. Geophys. Res. 102(C6), 12,663–12,676.Google Scholar
  58. Rabinovich, A.B., and Thomson, R.E. (2007), The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the World Ocean Part 1. Indian Ocean and South Africa. Pure Appl. Geophys. 164(2/3), 261–308.Google Scholar
  59. Rabinovich, A.B., Thomson, R.E., and Stephenson, F.E. (2006), The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic Oceans, Surveys Geophys. 27, 647–677.Google Scholar
  60. Rabinovich, A.B., Stroker, K., Thomson, R., and Davis, E. (2011a), DARTs and CORK in Cascadia Basin: High-resolution observations of the 2004 Sumatra tsunami in the northeast Pacific, Geophys. Res. Lett. 38, L08607; doi: 10.1029/2011GL047026.
  61. Rabinovich, A.B., Woodworth, P.L., and Titov, V.V. (2011b), Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage, Geophys. Res. Lett., 38. L16604; doi: 10.1029/2011GL048305.
  62. Rabinovich, A.B., Thomson, R.E., and Fine, I.V. (2013a), The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States, Pure Appl. Geophys., 170, 1529–1565; doi: 10.1007/s00024-012-0541-1.
  63. Rabinovich, A.B., Candella, R.N., and Thomson, R.E. (2013b), The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40, doi: 10.1002/grl.50625.
  64. Saito, T., Ito, Y., Inazu, D., and Hino, R. (2011), Tsunami source of the 2011 Tohoku‐Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations, Geophys. Res. Lett., 38; doi: 10.1029/2011GL049089.
  65. Satake, K. (2014), Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian Ocean tsunami, Geosci. Lett. 1(15), 1–13.Google Scholar
  66. Satake, K., Baba, T., Hirata, K. et al. (2005), Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges, Earth Planets Space, 57, 173–178.Google Scholar
  67. Satake, K., Fujii, Y., Harada, T., and Namegaya, Y. (2013), Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data, Bull. Seismol. Soc. Am., 103, 1473–1492.Google Scholar
  68. Saxena, N., and Zielinski, A. (1981), Deep-ocean system to measure tsunami wave height, Mar. Geodesy, 5(1), 55–62.Google Scholar
  69. Shevchenko, G., Ivelskaya, T., Loskutov, A., and Shishkin, A. (2013), The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia, Pure Appl. Geophys., 170, 1511–1527.Google Scholar
  70. Shevchenko, G., Ivelskaya, T., and Loskutov, A. (2014), Characteristics of the 2011 Great Tohoku tsunami on the Russian Far East coast: Deep-water and coastal observations, Pure Appl. Geophys., 171(12), 3329–3350; doi: 10.1007/s00024-014-0727-1.
  71. Snodgrass, F.E. (1969), Study of ocean waves, 10-5 to 1 Hz, Inst. Geophys. Planet. Phys., University of California, San Diego, Surv. Paper No. 8, 34 pp.Google Scholar
  72. Soloviev, S.L. (1968), The tsunami problem and its significance for Kamchatka and the Kuril Islands, In: The Tsunami Problem, Nauka, Moscow, pp. 7–50 [in Russian].Google Scholar
  73. Soloviev, S.L., and Go, Ch. N. (1974), Catalogue of Tsunamis on the Western Shore of the Pacific Ocean, Nauka, Moscow, 309 pp. [in Russian; English Traslation: Canadian Transl. Fish. Aquatic Sci., No. 5078, Ottawa, 1984, 439 pp.].Google Scholar
  74. Soloviev, S.L., Popov, V.M., Miller, G.R., et al. (1976), Preliminary Results of the First Soviet-American Tsunami Expedition. Hawaii Institute of Geophysics, NOAA-JTRE-162, HIG-76-8, 74 pp.Google Scholar
  75. Stein, S., and Okal E.A. (2005), Speed and size of the Sumatra earthquake, Nature, 434, 581–582, doi: 10.1038/434581a.
  76. Taira, K., Teramoto, T., and Kitagawa, S. (1985), Measurements of ocean bottom pressure with quartz sensor, J. Oceanogr. Soc. Jpn., 41(3), 181–192.Google Scholar
  77. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E., and Newman, J. (2008), Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res. 113(C12015); doi: 10.1029/2008JC004922.
  78. Thomson, R.E., and Emery, W.J. (2014), Data Analysis Methods in Physical Oceanography, Third and revised edition, Elsevier, New York, 716 pp.Google Scholar
  79. Thomson, R.E., Fine, I.V., Rabinovich, A.B., Mihaly, S.F., Davis, E.E., Heesemann, M., and Krassovski, M.V. (2011), Observations of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami forecast model, Geophys. Res. Lett. 38, L11701; doi: 10.1029/2011GL046728.
  80. Titov, V.V. (2009), Tsunami forecasting, In: The Sea, Vol. 15, Tsunamis, (Eds. A. Robinson and E. Bernard), Harvard University Press, Cambridge, USA, pp. 371–400.Google Scholar
  81. Titov, V.V., González, F.I., Bernard, E.N.Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005a), Real-time tsunami forecasting: Challenges and solutions, Nat. Hazards, 35(1), 41–58.Google Scholar
  82. Titov, V.V., Rabinovich, A.B., Mofjeld, H., Thomson, R.E., and González, F.I. (2005b), The global reach of the 26 December 2004 Sumatra tsunami, Science 309, 2045–2048.Google Scholar
  83. Tolkova, E. (2010), EOF analysis of a time series with application to tsunami detection, Dyn. Atmos. Oceans 50(1), 35–54.Google Scholar
  84. Uehira, K., Kanazawa, T., Noguchi, S.I. et al. (2012), Ocean bottom seismic and tsunami network along the Japan Trench, AGU 2012 Fall Meeting, OS41C-1736. http://www.fallmeeting.agu.org/2012/eposters/eposter/os41c-1736/.
  85. UNESCO (1975), An Intercomparison of Open Sea Tidal Pressure Sensors. Techn. Papers in Marine Sciences, No. 21, 67 pp.Google Scholar
  86. Vitousek, M.J. (1965), An evolution of the vibrotron pressure transducer as a mid-ocean tsunami gage, Hawaii Institute of Geophysics, HIG-65-13, University of Hawaii, Honolulu, 12 pp.Google Scholar
  87. Vitousek, M.J., and Miller, G.R. (1970), An instrumentation system for measuring tsunamis in the deep ocean, Honolulu: University Press., 239–252.Google Scholar
  88. Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys., 36(1), 105–142.Google Scholar
  89. Webb, S.C., Zhang, X., and Crawford, W. (1991), Infragravity waves in the deep ocean. J. Geophys. Res., 96(C2), 141–144.Google Scholar
  90. Zielinski A., and Saxena N. (1983a), Rationale for measurement of midocean tsunami signature, Mar. Geodesy, 6(3–4), 331–337.Google Scholar
  91. Zielinski A., and Saxena N. (1983b), Tsunami detectability using open-ocean bottom pressure fluctuations, IEEE J. Oceanic Eng, OE-8(4), 272–280.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Fisheries and OceansInstitute of Ocean SciencesSidneyCanada
  2. 2.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleUSA

Personalised recommendations