Pure and Applied Geophysics

, Volume 172, Issue 3–4, pp 901–920 | Cite as

Probabilistic Tsunami Hazard in the Northeast Atlantic from Near- and Far-Field Tectonic Sources

  • R. OmiraEmail author
  • M. A. Baptista
  • L. Matias


In this article, we present the first study on probabilistic tsunami hazard assessment for the Northeast (NE) Atlantic region related to earthquake sources. The methodology combines the probabilistic seismic hazard assessment, tsunami numerical modeling, and statistical approaches. We consider three main tsunamigenic areas, namely the Southwest Iberian Margin, the Gloria, and the Caribbean. For each tsunamigenic zone, we derive the annual recurrence rate for each magnitude range, from Mw 8.0 up to Mw 9.0, with a regular interval, using the Bayesian method, which incorporates seismic information from historical and instrumental catalogs. A numerical code, solving the shallow water equations, is employed to simulate the tsunami propagation and compute near shore wave heights. The probability of exceeding a specific tsunami hazard level during a given time period is calculated using the Poisson distribution. The results are presented in terms of the probability of exceedance of a given tsunami amplitude for 100- and 500-year return periods. The hazard level varies along the NE Atlantic coast, being maximum along the northern segment of the Morocco Atlantic coast, the southern Portuguese coast, and the Spanish coast of the Gulf of Cadiz. We find that the probability that a maximum wave height exceeds 1 m somewhere in the NE Atlantic region reaches 60 and 100 % for 100- and 500-year return periods, respectively. These probability values decrease, respectively, to about 15 and 50 % when considering the exceedance threshold of 5 m for the same return periods of 100 and 500 years.


Tsunami Probabilistic approach NE Atlantic 



This work is funded by the Assessment, Strategy and Risk Reduction for Tsunamis in Europe (ASTARTE) project, grant 603839, 7th FP (ENV.2013.6.4-3). The authors would like to thank the editor and reviewers for their valuable comments and suggestions, which were helpful in improving this article.


  1. Allgeyer, S., Daubord, C., Hébert, H., Loevenbruck, A., Schindelé, F., and Madariaga, R. (2013), Could a 1755-like tsunami reach the French Atlantic coastline? Constraints from twentieth century observations and numerical modeling. Pure Appl. Geophys. 170(9–10), 1415–1431.Google Scholar
  2. Álvarez-Gómez, J. A., Aniel-Quiroga, Í., Gutiérrez-Gutiérrez, O. Q., Larreynaga, J., González, M., Castro, M., Gavidia, F., Aguirre-Ayerbe, I., González-Riancho, P., and Carreño, E. (2013), Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Nat. Hazards Earth Syst. Sci., 13, 2927–2939.Google Scholar
  3. Argus, D. F., Gordon, R. G., DeMets, C., and Stein, S. (1989), Closure of the Africa–Eurasia–North America plate motion circuit and tectonics of the Gloria fault. J. Geophys. Research (Solid Earth) (1978–2012), 94(B5), 5585–5602.Google Scholar
  4. Baptista, M.A., and Miranda, J.M. (2009), Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci. 9, 25–42.Google Scholar
  5. Baptista, M. A., Miranda, J. M., Omira, R., and Antunes, C. (2011a), Potential inundation of Lisbon downtown by a 1755-like tsunami. Nat. Hazards Earth Syst. Sci. 11, 3319–3326.Google Scholar
  6. Baptista, M., Miranda, J. M., Batllo, J., and Macia, R. (2011b), North East Atlantic tsunamis related with Gloria fault. AGU Fall Meeting Abstracts, Vol. 1, p. 1530.Google Scholar
  7. Brizuela, B., Armigliato, A., and Tinti, S. (2014), Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru. Nat. Hazards Earth Syst. Sci., 14, 1889–1903.Google Scholar
  8. Buforn, E., Bezzeghoud, M., Udias, A., and Pro, C. (2004), Seismic sources on the Iberia-African plate boundary and their tectonic implications. Pure Appl. Geophys. 161(3), 623–646.Google Scholar
  9. Carrilho, F., Nunes, J.C., Pena, J., and Senos, M.L., (2004), Catálogo Sísmico de Portugal Continental e Região Adjacente para o período 19702000. Instituto de Meteorologia, ISBN 972-9083-12-6.Google Scholar
  10. Cat-neamtws (600BC to 2003AD). European/NEAMTWS Tsunami Catalog from 600BC to 2003AD.
  11. DEFRA, (2006) Tsunamisassessing the hazard for the UK and Irish coasts. Study commissioned by the Defra Flood Management Division, the Health and Safety Executive and the Geological Survey of Ireland. June 2006, pp. 91.Google Scholar
  12. Duarte, J. C., Rosas, F. M., Terrinha, P., Schellart, W. P., Boutelier, D., Gutscher, M. A., and Ribeiro, A. (2013), Are subduction zones invading the Atlantic? Evidence from the southwest Iberia. Marine Geology 41(8), 839–842.Google Scholar
  13. Fernandes, R. M. S., Ambrosius, B. A. C., Noomen, R., Bastos, L., Wortel, M. J. R., Spakman, W., and Govers, R. (2003). The relative motion between Africa and Eurasia as derived from ITRF 2000 and GPS data. Geophys. Res. Lett. 30(16), 1828.Google Scholar
  14. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., and Kulikov, E. A. (2005), The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215(1), 45–57.Google Scholar
  15. Gardner, J.K., and Knopoff, L. (1974), Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian?. Bull. Seism. Soc., 64, 1363–1367.Google Scholar
  16. Geist, E. L., and Parsons, T. (2006), Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277–314.Google Scholar
  17. González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., Titov, V.V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., and Yalciner A. (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources. J. Geophys. Research (Oceans) 114(C11), 1978–2012.Google Scholar
  18. Grezio, A., Marzocchi, W., Sandri, L., and Gasparini, P. (2010), A Bayesian procedure for probabilistic tsunami hazard assessment. Nat. Hazards, 53, 159–174.Google Scholar
  19. Gutscher, M. A., Malod, J., Rehault, J. P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., and Spakman, W. (2002), Evidence for active subduction beneath Gibraltar. Geology 30(12), 1071–1074.Google Scholar
  20. Harbitz, C. B. (1992), Model simulations of tsunamis generated by the Storegga slides. Marine Geology, 105, 1–21.Google Scholar
  21. Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H.,. and Kjekstad, O. (2012), Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Continental Shelf Research 38, 1–23.Google Scholar
  22. International Seismological Centre, On-line Bulletin,, Internatl. Seis. Cent., Thatcham, United Kingdom, 2012.
  23. IPMA (2014),, last accessed 19/09/2014.
  24. Johnston, A. C. (1996), Seismic moment assessment of earthquakes in stable continental regionsIII. New Madrid 1811–1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International 126(2), 314–344.Google Scholar
  25. Jelínek, R., Krausmann, E., González, M., Álvarez-Gómez, J. A., Birkmann, J., and Welle, T. (2012), Approaches for tsunami risk assessment and application to the city of Cádiz, Spain. Natural Hazards 60(2), 273–293.Google Scholar
  26. Kaabouben, F., Baptista, M. A., Brahim, A. I., El Mouraouah, A., and Toto, A. (2009), On the moroccan tsunami catalogue. Nat. Hazards Earth Syst. Sci., 9, 1227–1236.Google Scholar
  27. Kijko, A., and Sellevoll, M.A. (1992), Estimation of earthquake hazard parameters from incomplete data files. Part II, incorporation of magnitude heterogeneity. Bull. Seismol. Soc. Am. 82, 120–134.Google Scholar
  28. Kijko, A. (2004), Estimation of maximum earthquake magnitude M max. Pure Appl. Geophys. 161, 1655–1681.Google Scholar
  29. Lander, J. F., Whiteside, L. S., and Lockridge, P. A. (2002), A brief history of tsunamis in the Caribbean Sea. Sci. Tsunami Hazards 20(2), 57–94.Google Scholar
  30. Lima, V.V., Miranda, J.M., Baptista, M.A., Catalão, J.C., Gonzalez, M., Otero, L., Olabarrieta, M., Álvarez-Gómez, J.A., and Carreño, E. (2010), Impact of a 1755 like tsunami in Huelva Spain. Nat. Hazards Earth Syst. Sci. 10, 139–148.Google Scholar
  31. Liu, P. L-F, Woo, S-B., and Cho, Y-S. (1998), Computer programs for tsunami propagation and inundation, Technical report, Cornell University.Google Scholar
  32. Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., and Zitellini, N. (2012), Large, deepwater slope failures: implications for landslide-generated tsunamis. Geology, 40(10), 931–934.Google Scholar
  33. Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., and Valensise, G. (2008), Earthquake generated tsunamis in the Mediterranean Sea: scenarios of potential threats to southern Italy. J. Geophys. Research (Solid Earth) 113(B1), 1978–2012.Google Scholar
  34. Løvholt, F., Bungum, H., Harbitz, C. B., Glimsdal, S., Lindholm, C.D., and Pedersen, G. (2006), Earthquake related tsunami hazard along the western coast of Thailand. Nat. Hazards Earth Syst. Sci., 6, 979–997.Google Scholar
  35. Maramai, A., Brizuela, B., and Graziani, L. (2014), The Euro-Mediterranean Tsunami Catalogue. Annals of Geophysics, 57(4), S0435.Google Scholar
  36. Martins, I., and Mendes-Victor, L. (1990), Contribuição para o Estudo da Sismicidade de Portugal Continental. Publicação 18, Instituto Geofísico Infante D. Luís, Lisboa.Google Scholar
  37. Martins, I., and Mendes-Victor, L. (2001). Contribuição para o Estudo da Sismicidade da Região Oeste da Península Ibérica. Publicação 25, Instituto Geofísico Infante D. Luís, Lisboa.Google Scholar
  38. Matias, L. M., Cunha, T., Annunziato, A., Baptista, M. A., and Carrilho, F. (2013), Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat. Hazards Earth Syst. Sci. 13(1), 1–13.Google Scholar
  39. Mercado, A., and McCann, W. (1998), Numerical simulation of the 1918 Puerto Rico tsunami. Natural Hazards 18, 57–76.Google Scholar
  40. Murty, T. S. (1977), Deep water signature of a tsunami. Marine Geodesy, 1, 73–102.Google Scholar
  41. Omira, R., Baptista, M. A., Matias, L., Miranda, J. M., Catita, C., Carrilho, F., Toto, E. (2009), Design of a sea-level tsunami detection network for the Gulf of Cadiz. Nat. Hazards Earth Syst. Sci. 9(4), 1327–1338.Google Scholar
  42. Omira, R., Baptista, M. A., Miranda, J. M., Toto, E., Catita, C., and Catalao, J. (2010), Tsunami vulnerability assessment of CasablancaMorocco using numerical modelling and GIS tools. Natural Hazards 54(1), 75–95.Google Scholar
  43. Omira, R., Baptista, M. A., and Miranda, J. M. (2011), Evaluating tsunami impact on the Gulf of Cadiz coast (northeast Atlantic). Pure Appl. Geophys. 168(6–7), 1033–1043.Google Scholar
  44. Omira, R., Baptista, M. A., Leone, F., Matias, L., Mellas, S., Zourarah, B., Miranda, J. M., Carrilho, F., and Cherel, J.-P. (2013), Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami. Nat. Hazards Earth Syst. Sci. 13, 1779–1794.Google Scholar
  45. Power, W., Downes, G., and Stirling, M. (2007), Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure Appl. Geophys. 164, 547–564.Google Scholar
  46. Renou, C., Lesne, O., Mangin, A., Rouffi, F., Atillah, A., El Hadani, D., and Moudni, H. (2011), Tsunami hazard assessment in the coastal area of Rabat and Salé, Morocco. Nat. Hazards Earth Syst. Sci. 11, 2181–2191.Google Scholar
  47. Ribeiro, J., Silva, A., and Leitão, P. (2011), High resolution tsunami modelling for the evaluation of potential risk areas in Setúbal (Portugal). Nat. Hazards Earth Syst. Sci. 11, 2371–2380.Google Scholar
  48. Rosas, F. M., Duarte, J. C., Neves, M. C., Terrinha, P., Silva, S., Matias, L., et al. (2012), Thrustwrench interference between major active faults in the Gulf of Cadiz (AfricaEurasia plate boundary, offshore SW Iberia): tectonic implications from coupled analog and numerical modeling. Tectonophysics, 548, 1–21.Google Scholar
  49. Stirling, M., Rhoades, D., and Berryman K., (2002), Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era. Bull. Seis. Soc. Am. 92(2), 812–830.Google Scholar
  50. Sousa, M., Martins, A., and Oliveira, C. S. (1992). Compilação de Catálogos Sísmicos da Região Ibérica. Proc. 36/11/9295, Laboratório Nacional de Engenharia Civil, Lisboa.Google Scholar
  51. Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., and Grünthal, G. (2012), Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research (Solid Earth) 117(B1), 1978–2012.Google Scholar
  52. Tanner, J.G. and Shepherd, J. B. (1997), Seismic Hazard in Latin America and the Caribbean, vol. 1, Project Catalog and Seismic Hazard Maps. Instituto Panamericano de Geografia y Historia, 143 pp.Google Scholar
  53. Tinti, S., and Armigliato, A. (2003), The use of scenarios to evaluate the tsunami impact in southern Italy. Marine Geology 199(3), 221–243.Google Scholar
  54. Tinti, S., Armigliato, A., Pagnoni, G., and Zaniboni, F. (2005), Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET J. Earthquake Technol. 42, 171–188.Google Scholar
  55. Wells, D.L., and Coppersmith, K.J. (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seis. Soc. Am. 84(4), 974–1002.Google Scholar
  56. Wiemer, S., and Wyss. M. (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seism. Soc. Am. 90, 859–869.Google Scholar
  57. Yadav, R.B.S., Tsapanos, T.M., Tripathi, J.N., and Chopra, S. (2013), An evaluation of tsunami hazard using Bayesian approach in the Indian Ocean. Tectonophysics, 593, 172–182.Google Scholar
  58. Zitellini, N., Gràcia, E., Matias, L., Terrinha, P., Abreu, M. A., DeAlteriis, G., and Diez, S. (2009), The quest for the AfricaEurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters 280(1), 13–50.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Instituto Português do Mar e da Atmosfera, IPMA, I. P.LisbonPortugal
  2. 2.Instituto Dom Luiz, IDLUniversity of LisbonLisbonPortugal
  3. 3.Instituto Superior de Engenharia de LisboaLisbonPortugal

Personalised recommendations