Pure and Applied Geophysics

, Volume 172, Issue 10, pp 2601–2620 | Cite as

3D Simultaneous Traveltime Inversion for Velocity Structure, Hypocenter Locations, and Reflector Geometry Using Multiple Classes of Arrivals

  • Chao-ying Bai
  • Guo-jiao Huang
  • Xing-wang Li
  • Stewart Greenhalgh


Traditionally, traveltime tomography entails inversion of either the velocity field and the reflector geometry sequentially, or the velocity field and the hypocenter locations simultaneously or in a cascaded fashion, but seldom are all three types (velocities, geometry of reflectors, and source locations) updated simultaneously because of the compromise between the different classes of model variable and the lack of different seismic phases to constrain these variables. By using a state-of-the-art ray-tracing algorithm for the first and later arrivals combined with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model variables. In the work discussed in this paper we combined the multistage irregular shortest-path ray-tracing algorithm with a subspace inversion solver to achieve simultaneous inversion of multi-class variables, using arrival times for different phases to concurrently obtain the velocity field, the reflector shapes, and the hypocenter locations. Simulation and comparison tests for two sets of source–receiver arrangements (one the ideal case and the other an approximated real case) indicate that the combined triple-class inversion algorithm is capable of obtaining nearly the same results as the double-class affect inversion scheme (velocity and reflector geometry, or velocity and source locations) even if a lower ray density and irregular source-receiver geometry are used to simulate the real situation. In addition, the new simultaneous inversion method is not sensitive to a modest amount of picking error in the traveltime data and reasonable uncertainty in earthquake hypocenter locations, which shows it to be a feasible and promising approach in real applications.


Simultaneous inversion reflector geometry hypocenter location three model variable classes subspace inversion multistage irregular shortest-path ray tracing 



This research work was partially supported by the Doctoral Programming Research Fund of Higher Education, Chinese Ministry of Education (project no. 20110205110010).


  1. Asad A. M., Pullammanappallil S. K., Anooshehpoor A. and Louie, J. N., 1999. Inversion of traveltime data for earthquake locations and three-dimensional velocity structure in the Eureka Valley area, eastern California. Bull. Seism. Soc. Am., 89, 796–810.Google Scholar
  2. Bai C. Y. and Greenhalgh S., 2005. 3-D non-linear travel time tomography: Imaging high contrast velocity anomalies. Pure Appl. Geophys., 162, 2029–2049.Google Scholar
  3. Bai C. Y. and Greenhalgh S., 2006. 3D local earthquake hypocenter determination with an ‘irregular’ shortest-path method. Bull Seism Soc Am, 96, 2257–2268.Google Scholar
  4. Bai C. Y., Greenhalgh S. and Zhou B., 2007. 3D ray tracing by using a modified shortest-path method. Geophysics, 72, T27–T36.Google Scholar
  5. Bai C. Y., Huang G. J. and Zhao R., 2010. 2D/3D irregular shortest-path raytracing for multiple arrivals and its applications, Geophys. J. Int. 183, 1596–1612.Google Scholar
  6. Bai C. Y., Zhao R., and Greenhalgh S., 2010. Rapid 3D earthquake location using a hybrid global-local inversion approach. Pure Appl. Geophys., 167, 1377–1387.Google Scholar
  7. Ballard S., Hipp J. R., and Yang C. J., 2009. Efficient and accurate calculation of ray theory seismic travel time through variable resolution 3D earth models. Seismol. Res. Lett., 80, 989–999.Google Scholar
  8. Bijwaard H., and Spakman W., 1999. Fast Kinematic ray tracing of first- and later-arriving global seismic phase. Geophys. J. Int., 139, 359–369.Google Scholar
  9. Dahlen F. A., Hung S. H., and Nolet G., 2000. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int., 141, 157–174.Google Scholar
  10. De Kool M., Rawlinson N., and Sambridge M., 2006. A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media. Geophys. J. Int., 167, 253-270.Google Scholar
  11. Eberhart-Phillips D., 1986. Three-dimensional velocity structure in northern California coast ranges from inversion of local earthquake arrival times. Bull. Seism. Soc. Am., 76, 1025–1052.Google Scholar
  12. Greenhalgh S., Zhou B., and Green A. G., 2005. Solutions, algorithms and inter-relations for local minimization search geophysical inversion. J. Geophys. Eng., 3, 101–113.Google Scholar
  13. Hobro J. W. D., Singh S. C., and Minshull T. A., 2003. Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data, Geophys. J. Int. 152, 79-93.Google Scholar
  14. Hole J., 1992. Nonlinear high-resolution three-dimensional seismic travel time tomography. Geophys. J. Int., 97, 6553–6562.Google Scholar
  15. Hole J. and Zelt B., 1995. 3D finite-difference reflection traveltimes. Geophys. J. Int., 121, 427-434.Google Scholar
  16. Huang G. J., Bai C. Y., Zhu D. L.and Greenhalgh S., 2012. 2D/3D seismic simultaneous inversion for velocity model and interface geometry using multiple classes of arrivals. Bull Seism Soc Am, 102, 790–801.Google Scholar
  17. Huang G. J., Bai C. Y. and Greenhalgh S, 2013. Fast and accurate global multi-phase arrival tracking: The irregular shortest-path method in a 3D spherical earth model. Geophys. J. Int., 194, 1878–1892.Google Scholar
  18. Huang G. J., 2014. Simultaneous traveltime inversion in complex isotropic/anisotropic medium using multi-phase arrivals. PhD Thesis, Chang’an Uni., Xi’an, China.Google Scholar
  19. Kennett B. L. N., Sambridge M. S. and Williamson P. R., 1988. Subspace methods for large inverse problem with multiple parameter classes. Geophys. J., 94, 237–247.Google Scholar
  20. Kennett B. L. N., Engdahl E. R. and Buland R., 1995. Constraints on seismic velocities in the earth from traveltimes. Geophys. J. Int., 122, 108–124.Google Scholar
  21. Kennett B. L. N. and Sambridge M., 1998. Inversion for multiple parameter classes. Geophys. J. Int., 135, 304-306.Google Scholar
  22. Klimeš L. and Kvasnička M., 1994. 3D network ray tracing. Geophys. J. Int., 116, 726–738.131, 87–99.Google Scholar
  23. Malinverno A. and Parker R. L., 2006. Two ways to quantify uncertainty in geophysical inverse problems. Geophysics, 71, W15–W27.Google Scholar
  24. McCaughey M. and Singh S. C., 1997. Simultaneous velocity and interface tomography of normal-incidence and wide-aperture seismic traveltime data. Geophys. J. Int.,Google Scholar
  25. Montelli R., Nolet G., Dahlen F. A., Masters G., Engdahl E.R. and Hung S. H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.Google Scholar
  26. Moser T..J., 1991. Shortest path calculation of seismic rays. Geophysics, 56, 59–67.Google Scholar
  27. Paige C. and Saunders M., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. on Math. Soft., 8, 43–71.Google Scholar
  28. Pavlis G. L. and Booker J. R., 1980. The mixed discrete-continuous inversion problem: application to the simultaneous determination of earthquake hypocenter and velocity structure. J. Geophys. Res., 85, 4801–4810.Google Scholar
  29. Preston A. L., 2003. Simultaneous inversion of 3D velocity structure, hypocenter locations, and reflector geometry in Cascadia. PhD thesis, University of Washington.Google Scholar
  30. Preston A. L., Creager K. C.; Crosson R. S.; Brocher T. M.; Trehu A. M., 2003. Intraslab earthquakes–Dehydration of the Cascadia slab: Science, 302, 1197–1200.Google Scholar
  31. Protti M., Schwartz S. Y. and Zandt G., 1996. Simultaneous inversion for earthquake location and velocity structure beneath central Costa Rica. Bull. Seism. Soc. Am., 86, 19–31.Google Scholar
  32. Rawlinson N., Houseman G. A. and Collins C. D. N., 2001. Inversion of seismic refraction and wide-angle reflection traveltimes for 3D layered crustal structure. Geophys. J. Int., 145, 381–401.Google Scholar
  33. Rawlinson N. and Sambridge M., 2003. Seismic traveltime tomography of the crust and lithosphere. Advanced in Geophysics, 46, 81–198.Google Scholar
  34. Rawlinson N. and Sambridge M., 2004. Wavefront evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156, 631–647.Google Scholar
  35. Rawlinson N., Sambridge M. and Hauser J., 2010. Multipathing, reciprocal traveltime fields and raylets. Geophys. J. Int. 181, 1077–1092.Google Scholar
  36. Sambridge M. S. and Kennett B.L.N., 1989. Boundary value ray tracing in heterogeneous media: a simple and versatile algorithm. Geophys. J. Int., 101, 157–168.Google Scholar
  37. Sambridge M. S., 1990. Non-linear arrival time inversion: Constraining velocity anomalies by seeking smooth models in 3D. Geophys. J. Int., 102, 653–677.Google Scholar
  38. Shapiro N.M., Campillo M., Stehly L. and Ritzwoller M. H., 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.Google Scholar
  39. Thurber C. H., 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California, J. Geophys. Res., 88, 8226–8236.Google Scholar
  40. Vinje V., Iversen E. and Gjoystdal H., 1993. Travel-time and amplitude estimation using wave-front construction. Geophysics, 58:1157–1166.Google Scholar
  41. Vinje V., Astebøl K., Iversen E. and Gjøystdal H., 1999. 3D ray modelling by wavefront construction in open models. Geophys. Prospect., 64:1912–1919.Google Scholar
  42. Williamson P. R., 1990. Tomographic inversion in reflection seismology. Geophys. J. Int., 100, 255–274.Google Scholar
  43. Zelt C. A. and Mith R. B., 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108, 16–34.Google Scholar
  44. Zelt C. A., Sain K., Naumenko J. V. and Sawyer D. S., 2003. Assessment of crustal velocity models using seismic refraction and reflection tomography, Geophys. J. Int. 153, 609-626.Google Scholar
  45. Zhao D., 2001. Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett., 192, 251–265.Google Scholar
  46. Zhou B., Greenhalgh S.A. and Sindinovski C., 1992. Iterative algorithm for the damped minimum norm, least-squares and constrained problem in seismic tomography. Explor. Geophys., 23, 497–505.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Chao-ying Bai
    • 1
    • 2
  • Guo-jiao Huang
    • 1
  • Xing-wang Li
    • 1
  • Stewart Greenhalgh
    • 3
  1. 1.Department of Geophysics, College of Geology Engineering and GeomaticsChang’an UniversityXi’anChina
  2. 2.Institute of Computing GeophysicsChang’an UniversityXi’anChina
  3. 3.Institute of GeophysicsETHZurichSwitzerland

Personalised recommendations