Pure and Applied Geophysics

, Volume 172, Issue 5, pp 1243–1267 | Cite as

Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion

  • Shiqing Xu
  • Yehuda Ben-Zion
  • Jean-Paul Ampuero
  • Vladimir Lyakhovsky


The spontaneous generation of brittle rock damage near and behind the tip of a propagating rupture can produce dynamic feedback mechanisms that modify significantly the rupture properties, seismic radiation, and generated fault zone structure. In this work, we study such feedback mechanisms for single rupture events and their consequences for earthquake physics and various possible observations. This is done through numerical simulations of in-plane dynamic ruptures on a frictional fault with bulk behavior governed by a brittle damage rheology that incorporates reduction of elastic moduli in off-fault yielding regions. The model simulations produce several features that modify key properties of the ruptures, local wave propagation, and fault zone damage. These include (1) dynamic generation of near-fault regions with lower elastic properties, (2) dynamic changes of normal stress on the fault, (3) rupture transition from crack-like to a detached pulse, (4) emergence of a rupture mode consisting of a train of pulses, (5) quasi-periodic modulation of slip rate on the fault, and (6) asymmetric near-fault ground motion with higher amplitude and longer duration on the side with reduced elastic moduli. The results can have significant implications to multiple topics ranging from rupture directivity and local amplification of seismic motion to near-fault tremor-like signals.


Mechanics of faulting dynamic rupture fault zone rheology friction fracture brittle damage 



We thank two anonymous referees and Editor Antonio Rovelli for useful comments. The study was supported by the National Science Foundation (Grants EAR-0944066, EAR-0944288 and EAR-0908903), the US–Israel Binational Science Foundation (Grant 2008248), and the Southern California Earthquake Center (based on NSF Cooperative Agreement EAR-0529922 and USGS Cooperative Agreement 07HQAC0026).


  1. Allam, A.A., and Ben-Zion, Y., (2012), Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography, Geophys. J. Int., 190, 1181–1196, doi: 10.1111/j.1365-246X.2012.05544.x.
  2. Ampuero, J.-P., (2002), Etude physique et numérique de la nucléation des séismes. Ph. D. thesis, Université Paris 7, Denis Diderot, Paris.Google Scholar
  3. Ampuero, J.-P., SEM2DPACK-2.3.8, (2012), Available at: http://sourceforge.net/projects/sem2d/.
  4. Ampuero, J.-P., and Ben-Zion, Y., (2008), Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int., 173, 674–692.Google Scholar
  5. Ampuero, J.-P., Ben-Zion, Y., and Lyakhovsky, V., (2008), Interaction between dynamic rupture and off-fault damage, Seism. Res. Lett., 79(2), 295.Google Scholar
  6. Andrews, D.J., (1976), Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687.Google Scholar
  7. Andrews, D.J., (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307, doi: 10.1029/2004JB003191.
  8. Andrews, D.J., Hanks, T.C., and Whitney, J.W., (2007), Physical limits on ground motion at Yucca Mountain, Bull. Seism. Soc. Am. 97, 1771–1792, doi: 10.1785/0120070014.
  9. Andrews, D.J., and Ben-Zion, Y., (1997), Wrinkle-like slip pulse on a fault between different materials, J. Geophys. Res., 102, 553–571.Google Scholar
  10. Avallone, A., Rovelli, A., Di Giulio, G., Improta, L., Ben-Zion, Y., Milana, G., and Cara, F., (2014), Wave-guide effects in very high rate GPS record of the 6 April 2009, Mw 6.1 L’Aquila, central Italy earthquake, J. Geophys. Res., 119, 490–501, doi: 10.1002/2013JB010475.
  11. Ben-Zion, Y., (1989), The response of two joined quarter-space to SH line sources located at the material discontinuity interface, Geophys. J. Int., 98,213–222.Google Scholar
  12. Ben-Zion, Y., (1990), The response of two half-spaces to point dislocations at the material interface, Geophys. J. Int., 101, 507–528.Google Scholar
  13. Ben-Zion, Y., (1998), Properties of seismic fault zone waves and their utility for imaging low velocity structures, J. Geophys. Res., 103, 12567–12585.Google Scholar
  14. Ben-Zion, Y., (2001), Dynamic ruptures in recent models of earthquake faults, J. Mech. Phys. Solids, 49, 2209–2244.Google Scholar
  15. Ben-Zion, Y., (2008), Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes, Rev. Geophys., 46, RG4006, doi: 10.1029/2008RG000260.
  16. Ben-Zion, Y., and Aki, K., (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. Seism. Soc. Amer., 80, 971–994.Google Scholar
  17. Ben-Zion, Y., and Ampuero, J.-P., (2009), Seismic radiation from regions sustaining material damage. Geophys. J. Int., 178, 1351–1356, doi: 10.1111/j.1365-246X.2009.04285.x.
  18. Ben-Zion, Y., and Andrews, D.J., (1998), Properties and implications of dynamic rupture along a material interface, Bull. Seism. Soc. Amer., 88, 1085–1094.Google Scholar
  19. Ben-Zion, Y., Dahmen, K., Lyakhovsky, V., Ertas, D., and Agnon, A., (1999), Self-driven mode switching of earthquake activity on a fault system, Earth Planet. Sci. Lett., 172/1–2, 11–21.Google Scholar
  20. Ben-Zion, Y., and Huang, Y., (2002), Dynamic rupture on an interface between a compliant fault zone layer and a stiffer surrounding solid, J. Geophys. Res., 107(B2), 2042, doi: 10.1029/2001JB000254.
  21. Ben-Zion, Y., and Lyakhovsky, V., (2002), Accelerated seismic release and related aspects of seismicity patterns on earthquake faults, Pure Appl. Geophys., 159, 2385–2412.Google Scholar
  22. Ben-Zion, Y., and Lyakhovsky, V., (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int., 165, 197–210, doi: 10.1111/j.1365-246X.2006.02878.x.
  23. Ben-Zion, Y., and Sammis, C.G., (2003), Characterization of Fault Zones, Pure Appl. Geophys., 160, 677–715.Google Scholar
  24. Ben-Zion, Y., and Shi, Z., (2005), Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett., 236, 486–496, doi: 10.1016/j.epsl.2005.03.025.
  25. Beroza, G.C., and Mikumo, T., (1996), Short time duration in dynamic rupture in the presence of heterogeneous fault properties, J. Geophys. Res., 101(B10), 22,449–22,460, doi: 10.1029/96JB02291.
  26. Brune, J.N., Henyey, T.L., and Roy, R. F., (1969), Heat flow, stress and rate of slip along the San Andreas Fault, California, J. Geophys. Res., 74, 3821–3827, doi: 10.1029/JB074i015p03821.
  27. Budiansky, B., and O’Connell, R.J., (1976), Elastic moduli of a cracked solid, Int. J. Solids Struct., 12, 81–97.Google Scholar
  28. Burridge, R., (1973), Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion, Geophys. J. R. Astr. Soc., 35, 439–455.Google Scholar
  29. Chouet, B., (2003), Volcano Seismology, Pure Appl. Geophys., 160, 739–788.Google Scholar
  30. Cochard, A., and Rice, J.R., (2000), Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip pulse response, J. Geophys. Res., 105, 25,891–25,907.Google Scholar
  31. Coker, D., Lykotrafitis, G., Needleman, A., and Rosakis, A.J., (2005), Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading, J. Mech. Phys. Solids, 53, 884–992.Google Scholar
  32. Das, S., and Aki, K., (1977), A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. R. Astr. Soc., 50(3), 643–668, doi: 10.1111/j.1365-246X.1977.tb01339.x.
  33. Day, S.M., (1982), Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity, Bull. Seism. Soc. Am., 72, 705–727.Google Scholar
  34. DeDontney, N., Templeton-Barrett, E.L., Rice, J.R., and Dmowska, R., (2011), Influence of plastic deformation on bimaterial fault rupture directivity, J. Geophys. Res., 116, B10312, doi: 10.1029/2011JB008417.
  35. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., (2011), Fault lubrication during earthquakes, Nature, 471(7339), 494, doi: 10.1038/nature09838.
  36. Duan, B., (2008a), Effects of low-velocity fault zones on dynamic ruptures with nonelastic off-fault response, Geophys. Res. Lett., 35, L04307, doi: 10.1029/2008GL033171.
  37. Duan, B., (2008b), Asymmetric off-fault damage generated by bilateral ruptures along a bimaterial interface, Geophys. Res. Lett., 35, L14306, doi: 10.1029/2008GL034797.
  38. Duan, B., and Day, S.M., (2008), Inelastic strain distribution and seismic radiation from rupture of a fault kink, J. Geophys. Res., 113, B12311, doi: 10.1029/2008JB005847.
  39. Dunham, E.M., Belanger, D., Cong, L., and Kozdon, J.E., (2011), Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, 1: Planar faults, Bull. Seism. Soc. Am., 101(5), 2296–2307.Google Scholar
  40. Festa, G., and Villotte, J.-P., (2006), Influence of the rupture initiation on the intersonic transition: Crack-like versus pulse-like modes, Geophys. Res. Lett, 33, L15320.Google Scholar
  41. Finzi, Y., Hearn, E.H., Ben-Zion, Y., and Lyakhovsky, V., (2009), Structural properties and deformation patterns of evolving strike-slip faults: numerical simulations incorporating damage rheology, Pure Appl. Geophys., 166, 1537–1573, doi: 10.1007/s00024-009-0522-1.
  42. Froment B., Campillo, M., Chen, J.H., and Liu, Q.Y., (2013), Deformation at depth associated with the 12 May 2008 MW 7.9 Wenchuan earthquake from seismic ambient noise monitoring, Geophys. Res. Lett., 40, doi: 10.1029/2012GL053995.
  43. Gabriel, A.A., Ampuero, J.-P., Dalguer, L.A., and Mai, P.M., (2012), The transition of dynamic rupture styles in elastic media under velocity-weakening friction, J. Geophys. Res., 117, B09311, doi: 10.1029/2012JB009468.
  44. Gabriel, A.A., Ampuero, J.-P., Dalguer, L.A., and Mai, P.M., (2013), Source properties of dynamic rupture pulses with off-fault plasticity, J. Geophys. Res., 118, doi: 10.1002/jgrb.50213.
  45. Gu, Y.J., and Wong, T.-F., (1994), Development of shear localization in simulated quartz gouge: effect of cumulative slip and gouge particle size, Pure Appl. Geophys., 143(1-3), 387–423.Google Scholar
  46. Gupta, I., (1973), Seismic velocities in rock subjected to axial loading up to shear fracture, J. Geophys. Res., 78(29), 6936–6942.Google Scholar
  47. Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., and Lockner, D., (2004), A viscoelastic damage model with applications to stable and unstable fracturing, Geophys. J. Int., 159, 1155–1165.Google Scholar
  48. Hamiel, Y., Lyakhovsky, V., Stanchits, S., Dresen, G., and Ben-Zion, Y., (2009), Brittle deformation and damage-induced seismic wave anisotropy in rocks, Geophys. J. Int., 178, 901–909, doi: 10.1111/j.1365-246X.2009.04200.x.
  49. Harris, R.A., and Day, S.M., (1997), Effects of a low-velocity zone on a dynamic rupture, Bull. Seism. Soc. Am., 87, 1267–1280.Google Scholar
  50. Heaton, T.H., (1990), Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth planet. Inter., 64, 1–20.Google Scholar
  51. Huang, Y., and Ampuero, J.-P., (2011), Pulse-like ruptures induced by low-velocity fault zones, J. Geophys. Res., 116, B12307, doi: 10.1029/2011JB008684.
  52. Huang, Y., Ampuero, J.-P., and Helmberger, D.V., (2014), Earthquake ruptures modulated by waves in damaged fault zones, J. Geophys. Res., 119, doi: 10.1002/2013JB010724.
  53. Ida, Y., (1972), Cohesive force across tip of a longitudinal-shear crack and Griffith’s specific surface-energy, J. Geophys. Res., 77, 3796–3805.Google Scholar
  54. Igel, H., Ben-Zion, Y., and Leary, P., (1997), Simulation of SH and P-SV wave propagation in fault zones, Geophys. J. Int., 128, 533–546.Google Scholar
  55. Jahnke, G., Igel, H., and Ben-Zion, Y., (2002), Three-dimensional calculations of fault-zone-guided waves in various irregular structures, Geophys. J. Int., 151, 416–426.Google Scholar
  56. Kaneko, Y., and Fialko, Y., (2011), Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response, Geophys. J. Int., 186, 1389–1403, doi: 10.1111/j.1365-246X.2011.05117.x.
  57. Kilgore, B., Lozos, J., Beeler, N., and Oglesby, D., (2012), Laboratory observations of fault strength in response to changes in normal stress, J. Appl. Mech., 79, 031007, doi: 10.1115/1.4005883.
  58. Lockner, D., Walsh, J., and Byerlee, J., (1977), Changes in seismic velocity and attenuation during deformation of granite, J. Geophys. Res., 82, 5374–5378.Google Scholar
  59. Lockner, D.A., and Byerlee, J.D., (1980), Development of fracture planes during creep in granite: in 2 nd Conference on Acoustic Emission/Microseismic activity in Geological Structure and materials, 1–25, Trans Tech., Clausthal-Zellerfeld, Germany.Google Scholar
  60. Lockner, D.A., and Beeler, N.M., (2002), Rock failure and earthquakes, in International Handbook of Earthquake and Engineering Seismology, pp. 505–537, eds Lee, W.H.K., Kanamori, H., Jennings, P.C. & Kisslinger, C., Academic Press, Amsterdam.Google Scholar
  61. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A., (1997a), Distributed damage, faulting, and friction, J. Geophys. Res., 102(B12), 27,635–27,649, doi: 10.1029/97JB01896.
  62. Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T.E., (1997b), Non-linear elastic behavior of damaged rocks, Geophys. J. Int., 130, 157–166.Google Scholar
  63. Lyakhovsky, V., and Ben-Zion, Y., (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int., 172, 651–662, doi: 10.1111/j.1365-246X.2007.03652.x.
  64. Lyakhovsky, V., and Ben-Zion, Y., (2009), Evolving geometrical and material properties of fault zones in a damage rheology model, Geochem. Geophys. Geosyst., 10, Q11011, doi: 10.1029/2009GC002543.
  65. Lyakhovsky, V., and Ben-Zion, Y., (2014a), Damage-breakage rheology model and solid-granular transition near brittle instability, J. Mech. Phys. Solids., 64. 184–197, doi: 10.1016/j.jmps.2013.11.007.
  66. Lyakhovsky, V., and Ben-Zion, Y. (2014b), A continuum damage-breakage faulting model accounting for solid-granular transitions, Pure Appl. Geophys., 171, doi: 10.1007/s00024-014-0845-4.
  67. Lyakhovsky, V., Hamiel, Y., Ampuero, J.-P., and Ben-Zion, Y., (2009), Non-linear damage rheology and wave resonance in rocks, Geophys. J. Int., 178, 910–920, doi: 10.1111/j.1365-246X.2009.04205.x.
  68. Lyakhovsky, V., Hamiel, Y., and Ben-Zion, Y., (2011), A non-local visco-elastic damage model and dynamic fracturing, J. Mech. Phys. Solids, 59, 1752–1776, doi: 10.1016/j.jmps.2011.05.016.
  69. Ma, S., and Andrews, D.J., (2010), Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault, J. Geophys. Res., 115, B04304, doi: 10.1029/2009JB006382.
  70. Mitchell, T.M., and Faulkner, D.R., (2009), The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struc. Geol., 31, 802–816.Google Scholar
  71. Oglesby, D.D., Archuleta, R., and Nielsen, S.B., (1998), Earthquakes on dipping faults: The effects of broken symmetry, Science, 280, 1055–1059, doi: 10.1126/science.280.5366.1055.
  72. Palmer, A.C., and Rice, J.R., (1973), Growth of slip surfaces in progressive failure of over-consolidated clay, Proc. R. Soc. London, Ser. A., 332, 527–548.Google Scholar
  73. Peng, Z., and Ben-Zion, Y., (2006), Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the North Anatolian Fault and strong ground motion, Pure appl. Geophys., 163, 567–600, doi: 10.1007/s00024-005-0034-6.
  74. Ranjith, K., and Rice, J.R., (2001), Slip dynamics at an interface between dissimilar materials, J. Mech. Phys. Solids, 49, 341–361.Google Scholar
  75. Rice, J.R., (1980), The mechanics of earthquake rupture: in Physics of Earth’s Interior, eds Dzieswonski A.M. & Boschi, E., Proc. Int. Sch. Phys. Enrico Fermi, 78, 555–649.Google Scholar
  76. Rockwell, T.K., and Ben-Zion Y., (2007), High localization of primary slip zones in large earthquakes from paleoseismic trenches, Observations and implications for earthquake physics, J. Geophys. Res., 112, B10304, doi: 10.1029/2006JB004764.
  77. Rockwell, T., Sisk, M., Girty, G., Dor, O., Wechsler, N., and Ben-Zion, Y., (2009), Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics, Pure Appl. Geophys., 166, 1725–1746, doi: 10.1007/s00024-009-0514-1.
  78. Rubin, A.M., and Ampuero, J.-P., (2007), Aftershock asymmetry on a bimaterial interface, J. Geophys. Res., 112, B05307, doi: 10.1029/2006JB004337.
  79. Shi, Z., and Ben-Zion, Y., (2006), Dynamic rupture on a bimaterial interface governed by slip-weakening friction, Geophys. J. Int., 165, 469–484.Google Scholar
  80. Shi, Z., Ben-Zion, Y., and Needleman, A., (2008), Properties of dynamic rupture and energy partition in a two-dimensional elastic solid with a frictional interface, J. Mech. Phys. Solids, 56, 5–24, doi: 10.1016/j.jmps.2007.04.006.
  81. Shi, Z., Needleman, A., and Ben-Zion, Y., (2010), Slip modes and partitioning of energy during dynamic frictional sliding between identical elastic viscoplastic solids, Int. J. Fract., 162, 51–67, doi: 10.1007/s10704-009-9388-6/.
  82. Shi, B., and Brune, J.N., (2005), Characteristics of near-fault ground motions by dynamic thrust faulting: two-dimensional lattice particle approaches, Bull. Seism. Soc. Am., 95(6), 2525–2533, doi: 10.1785/0120040227.
  83. Spudich, P., and Olsen, K.B., (2001), Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California, Geophys. Res. Lett., 28, 2533– 2536.Google Scholar
  84. Stanchits, S., Vinciguerra, S., and Dresen, G., (2006), Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl. Geophys., 163, 975–993, doi: 10.1007/s00024-006-0059-5.
  85. Templeton, E.L., and Rice, J.R., (2008), Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes, J. Geophys. Res., 113, B09306, doi: 10.1029/2007JB005529.
  86. Wechsler, N., Allen, E.E., Rockwell, T.K., Girty, G., Chester, J.S., and Ben-Zion, Y., (2011), Characterization of Pulverized Granitoids in a Shallow Core along the San Andreas Fault, Little Rock, CA, Geophys. J. Int., 186, 401–417, doi: 10.1111/j.1365-246X.2011.05059.x.
  87. Weertman, J., (1980), Unstable slippage across a fault that separates elastic media of different elastic constants, J. Geophys. Res., 85(B3), 1455–1461, doi: 10.1029/JB085iB03p01455.
  88. Weertman, J., (2002) Subsonic type earthquake dislocation moving at approximately \(\sqrt {2}\times\) shear wave velocity on interface between half spaces of slightly different elastic constants, Geophys. Res. Lett., 29(10), doi: 10.1029/2001GL013916.
  89. Weinberger, R., Reches, Z., Scott, T.S., and Eidelman, A., (1994), Tensile properties of rocks in four-point beam tests under confining pressure, pp. 435–442, in: Proceedings First North American Rock Mechanics Symposium, Austin, Texas.Google Scholar
  90. Wu, C., Peng, Z., and Ben-Zion, Y., (2009), Non-linearity and temporal changes of fault zone site response associated with strong ground motion, Geophys. J. Int., 176, 265–278, doi: 10.1111/j.1365-246X.2008.04005.x.
  91. Xu, S., Ben-Zion, Y., and Ampuero, J.-P., (2012a), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: 1. Model description and basic results, Geophys. J. Int., 191, 1325–1342, doi: 10.1111/j.1365-246X.2012.05679.x.
  92. Xu, S., Ben-Zion, Y., and Ampuero, J.-P., (2012b), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: 2. Detailed parameter-space study, Geophys. J. Int., 191, 1343–1360, doi: 10.1111/j.1365-246X.2012.05685.x.
  93. Xu, S., and Ben-Zion, Y., (2013), Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales, Geophys. J. Int., 193, 304–320, doi: 10.1093/gji/ggs105.
  94. Yamashita, T., (2000), Generation of microcracks by dynamic shear rupture and its effects on rupture growth and elastic wave radiation, Geophys. J. Int., 143, 395–406.Google Scholar
  95. Zheng, G., and Rice, J.R., (1998), Conditions under which velocity-weakening friction allows a self-healing versus a crack-like mode of rupture, Bull. Seism. Soc. Am., 88, 1466–1483.Google Scholar
  96. Zoback, M.D., and Byerlee, J.D., (1975), The effect of microcrack dilatancy on the permeability of Western granite, J. Geophys. Res., 80, 752–755.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Shiqing Xu
    • 1
    • 2
  • Yehuda Ben-Zion
    • 1
  • Jean-Paul Ampuero
    • 3
  • Vladimir Lyakhovsky
    • 4
  1. 1.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.National Research Institute for Earth Science and Disaster PreventionTsukubaIbarakiJapan
  3. 3.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Geological Survey of IsraelJerusalemIsrael

Personalised recommendations