Pure and Applied Geophysics

, Volume 172, Issue 1, pp 109–120 | Cite as

Wind Forecasting Based on the HARMONIE Model and Adaptive Finite Elements

  • Albert Oliver
  • Eduardo Rodríguez
  • José María Escobar
  • Gustavo Montero
  • Mariano Hortal
  • Javier Calvo
  • José Manuel Cascón
  • Rafael Montenegro
Article

Abstract

In this paper, we introduce a new method for wind field forecasting over complex terrain. The main idea is to use the predictions of the HARMONIE meso-scale model as the input data for an adaptive finite element mass-consistent wind model. The HARMONIE results (obtained with a maximum resolution of about 1 km) are refined in a local scale (about a few metres). An interface between both models is implemented in such a way that the initial wind field is obtained by a suitable interpolation of the HARMONIE results. Genetic algorithms are used to calibrate some parameters of the local wind field model in accordance to the HARMONIE data. In addition, measured data are considered to improve the reliability of the simulations. An automatic tetrahedral mesh generator, based on the meccano method, is applied to adapt the discretization to complex terrains. The main characteristic of the framework is a minimal user intervention. The final goal is to validate our model in several realistic applications on Gran Canaria island, Spain, with some experimental data obtained by the AEMET in their meteorological stations. The source code of the mass-consistent wind model is available online at http://www.dca.iusiani.ulpgc.es/Wind3D/.

Keywords

Adaptive finite element method HARMONIE model Local wind field forecasting Mass-consistent model Complex topography Genetic algorithms 

Notes

Acknowledgments

This work has been supported by the Spanish Government, “Ministerio de Ciencia e Innovación”, Grant Contracts: CGL2011-29396-C03-01 and CGL2011-29396-C03-02, and by “Junta de Castilla León”, “Consejería de Educación”, Grant Contract SA266A12-2.

References

  1. Borouchaki H, Frey P (2005) Simplification of surface mesh using hausdorff envelope. Computer Methods in Applied Mechanics and Engineering 194(48–49), pp. 4864–4884, DOI:10.1016/j.cma.2004.11.016.
  2. Bubnová R, Hello G, Bénard P, Geleyn J (1995) Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the arpege/aladin nwp system. Mon Wea Rev 123, pp. 515–535, DOI:10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2.
  3. Carvalho D, Rocha A, Santos CS, Pereira R (2013) Wind resource modelling in complex terrain using different mesoscale microscale coupling techniques. Applied Energy 108(0), pp. 493–504, DOI:10.1016/j.apenergy.2013.03.074.
  4. Cascón JM, Rodríguez E, Escobar JM, Montenegro R (2013) Comparison of the meccano method with standard mesh generation techniques. Engineering with Computers pp 1–14, DOI:10.1007/s00366-013-0338-6.
  5. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  6. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering 192(25), pp. 2775–2787, DOI:10.1016/S0045-7825(03)00299-8.
  7. Escobar JM, Rodríguez E, Montenegro R, Montero G, sc González-Yuste JM (2010) SUS code: simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/SUScode
  8. Ferragut L, Asensio M, Monedero S (2007) A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Advances in Engineering Software 38(6), pp. 366–371, DOI:10.1016/j.advengsoft.2006.09.007.
  9. Ferragut L, Montenegro R, Montero G, Rodríguez E, Asensio M, Escobar JM (2010) Comparison between 2.5-D and 3-D realistic models for wind field adjustment. Journal of Wind Engineering and Industrial Aerodynamics 98(10–11), pp. 548–558, DOI:10.1016/j.jweia.2010.04.004.
  10. Fischer C, Montmerle T, Berre L, Auger L, Ştefănescu SE (2005) An overview of the variational assimilation in the aladin/france numerical weather-prediction system. Quarterly Journal of the Royal Meteorological Society 131(613), pp. 3477–3492, DOI:10.1256/qj.05.115.
  11. Floater MS (2003) Mean value coordinates. Computer Aided Geometric Design 20(1), pp. 19–27, DOI:10.1016/S0167-8396(03)00002-5.
  12. Garratt J (1982) Observations in the nocturnal boundary layer. Boundary-Layer Meteorology 22(1), pp. 21–48, DOI:10.1007/BF00128054.
  13. Gasset N, Landry M, Gagnon Y (2012) A comparison of wind flow models for wind resource assessment in wind energy applications. Energies 5(11), pp. 4288–4322, DOI:10.3390/en5114288.
  14. Holland JH (1992) Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA.Google Scholar
  15. Kossaczký I (1994) A recursive approach to local mesh refinement in two and three dimensions. Journal of Computational and Applied Mathematics 55(3), pp. 275–288, DOI:10.1016/0377-0427(94)90034-5.
  16. Lalas D, Ratto C (1996) Modelling of Atmospheric Flow Fields. World Scientific Publishing, Singapore.Google Scholar
  17. Levine D (1994) A parallel genetic algorithm for the set partitioning problem.Google Scholar
  18. McRae GJ, Goodin WR, Seinfeld JH (1982) Development of a second-generation mathematical model for urban air pollution-I. Model formulation. Atmospheric Environment (1967) 16(4):679–696, DOI:10.1016/0004-6981(82)90386-9.
  19. Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Applied Numerical Mathematics 59(9), pp. 2203–2217, DOI:10.1016/j.apnum.2008.12.010.
  20. Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic three-dimensional triangulation and volume parametrization of complex solids. In: Topping B, Adam J, Pallarés F, Bru R, Romero M (eds) Developments and Applications in Engineering Computational Technology, seventh edn, Saxe-Coburg Publications, Stirlingshire, chap 2, pp 19–48, DOI:10.4203/csets.26.2.
  21. Montero G, Sanín N (2001) 3-D modelling of wind field adjustment using finite differences in a terrain conformal coordinate system. Journal of Wind Engineering and Industrial Aerodynamics 89(5), pp. 471–488, DOI:10.1016/S0167-6105(00)00075-1.
  22. Montero G, Montenegro R, Escobar JM (1998) A 3-D diagnostic model for wind field adjustment. Journal of Wind Engineering and Industrial Aerodynamics 74–76(0), pp. 249–261, DOI:10.1016/S0167-6105(98)00022-1.
  23. Montero G, Rodríguez E, Montenegro R, Escobar JM, González-Yuste JM (2005) Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Advances in Engineering Software 36(1), pp. 3–10, DOI:10.1016/j.advengsoft.2004.03.011.
  24. Navascués B, Calvo J, Morales G, Santos C, Callado A, Cansado A, Cuxart J, Díez M, del Río P, Escribà P, García-Colombo O, García-Moya J, Geijo C, Gutiérrez E, Hortal M, Martínez I, Orfila B, Parodi J, Rodríguez E, Sánchez-Arriola J, Santos-Atienza I, Simarro J (2013) Long-term verification of HIRLAM and ECMWF forecasts over southern europe: History and perspectives of numerical weather prediction at AEMET. Atmospheric Research 125–126(0), pp. 20–33, DOI:10.1016/j.atmosres.2013.01.010.
  25. Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM, Pérez-Foguet A (2012) Finite element simulation of a local scale air quality model over complex terrain. Advances in Science and Research 8, pp. 105–113, DOI:10.5194/asr-8-105-2012.
  26. Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM, Pérez-Foguet A (2013) Adaptive finite element simulation of stack pollutant emissions over complex terrains. Energy 49(0), pp. 47–60, DOI:10.1016/j.energy.2012.10.051.
  27. Panofsky H, Dutton J (1984) Atmospheric turbulence. Models and methods for engineering applications. Wiley, New York.Google Scholar
  28. Rodríguez E (2004) Modelización numérica de campos de viento mediante elementos finitos en 3-D. PhD thesis, Instituto Universitario de Sistemas Inteligentes y Aplicaiones Numéricas en Ingenierıa (IUSIANI), Universidad de Las Palmas de Gran Canaria (ULPGC).Google Scholar
  29. Rodríguez E, Montero G, Escobar JM, Montenegro R, Oliver A (2012) Wind3D. http://www.dca.iusiani.ulpgc.es/Wind3D
  30. Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The arome-france convective-scale operational model. Mon Wea Rev 139, pp. 976–991, DOI:10.1175/2010MWR3425.1.
  31. Spears W (1991) On the virtues of parameterized uniform crossover.Google Scholar
  32. Wan S, Yin Z, Zhang K, Zhang H, Li X (2011) A topology-preserving optimization algorithm for polycube mapping. Computers & Graphics 35(3), pp. 639–649, DOI:10.1016/j.cag.2011.03.018.
  33. Whitley D (1989) The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, pp 116–121.Google Scholar
  34. Zannetti P (1990) Air Pollution Modeling. Computational Mechanics Publications, Boston.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Albert Oliver
    • 1
  • Eduardo Rodríguez
    • 1
  • José María Escobar
    • 1
  • Gustavo Montero
    • 1
  • Mariano Hortal
    • 2
  • Javier Calvo
    • 2
  • José Manuel Cascón
    • 3
  • Rafael Montenegro
    • 1
  1. 1.University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI)University of Las Palmas de Gran Canaria (ULPGC)Las Palmas de Gran CanariaSpain
  2. 2.Agencia Estatal de Meteorología (AEMET)MadridSpain
  3. 3.Department of Economics and Economic History, Faculty of Economics and BusinessUniversity of SalamancaSalamancaSpain

Personalised recommendations