Pure and Applied Geophysics

, Volume 172, Issue 2, pp 267–282 | Cite as

Detection and Delineation of a Fracture Zone with Observation of Seismic Shear Wave Anisotropy in the Upper Rhine Graben, SW Germany

  • Michael Frietsch
  • Jörn C. Groos
  • Joachim R. R. RitterEmail author


Local seismic shear wave anisotropy is studied with recordings of microearthquakes near Landau and Insheim in the central Upper Rhine Graben, SW Germany. Although the recordings have a low signal-to-noise level and there is a complex heterogeneous 3-D tectonic structure, a time separation δt between horizontally polarised SH-waves and vertically polarised SV-waves can be observed in seismograms and particle motion diagrams. The observations can be explained by azimuthal anisotropy in the upper crust with a direction φ 0 = 155° east of north for the fast polarisation direction of SV-waves. A gradient of time separation with distance x of δt/x ~ 10 ms/km can explain the data. This model can be interpreted with a classical scenario of fluid-filled (sub-)vertical cracks with a preferred NNW-SSE orientation. Known faults strike NNW-SSE around Landau and Insheim and the seismicity pattern is also oriented in this direction. This direction coincides with the regional orientation of the maximum horizontal stress (σ H ), and fluids apparently exist at depth as known from geothermal water extraction. Furthermore, we find that 3-D seismic velocity heterogeneities have a much larger influence on the precision of the microearthquake location than the anisotropy effect in this complex tectonic region. This is obvious from the up to five times larger travel time residuals (maximum −0.5 s and +0.35 s), which are used as station corrections during the location procedure, compared to the anisotropic δt observations (maximum 0.1 s).


Seismic anisotropy fractures crustal structure 



We thank P. Knopf, R. Plokarz and W. Scherer for help with data acquisition and processing, and Prof. G. Eisbacher for fruitful discussions. Jens Zeiß provided hypocentre information. Seismic waveforms for this study were kindly provided by BESTEC GmbH, geo x GmbH, Exorca GmbH, DMT GmbH & Co. KG and the KIT KABBA datacentre. Data of tectonic elements were provided by the GeORG Projektteam (2013) and we thank J. Tesch, and B. Schmidt (LGB Mainz) for information on the geology. The editor Steward Greenhalgh and an anonymous reviewer helped to clarify several points in the manuscript. This study is part of the research project MAGS (Microseismic Activity of Geothermal Systems) which is funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety of the Federal Republic of Germany (FKZ 0325191A-F) and supervised by Projektträger Jülich (PT-J).


  1. Babuška, V., and Cara, M. (1991), Seismic anisotropy in the earth (Kluwer Academic Publishers, Dordrecht.Google Scholar
  2. Barth, A., Delvaux, D., and Wenzel, F. (2009), Tectonic stress field in rift systems – a comparison of Rhinegraben, Baikal Rift and East African Rift, Cahiers du Centre Européen de Géodynamique et de Séismologie 28, Luxembourg.Google Scholar
  3. Baumgärtner, J., and Lerch, C. (2013), Geothermal 2.0: The Insheim geothermal power plant, the second generation of geothermal power plants in the Upper Rhine Graben, in: Third European Geothermal Review, Papers and Abstracts, BESTEC GmbH, Landau, 9-10.Google Scholar
  4. Buchmann, T., (2008), 3D multi-scale finite element analysis of the present-day crustal state of stress and the recent kinematic behaviour of the northern and central Upper Rhine Graben, dissertation, Vrije Universiteit Amsterdam.Google Scholar
  5. Crampin, S. (1978), Seismic wave propagation through a cracked solid: polarisation as a possible dilatancy diagnostic, Geophys. J. R. astr. Soc. 53, 467-496.Google Scholar
  6. Crampin, S., and Lovell, J.H. (1991), A decade of shear-wave splitting in the Earth’s crust: what does it mean? what use can we make of it? and what should we do next? Geophys. J. Int. 107 387-407.Google Scholar
  7. Crampin, S., and Chastin, S. (2003), A review of shear wave splitting in the crack-critical crust, Geophys. J. Int. 155, 221-240.Google Scholar
  8. Cuenot, N., Dorbath, C., and Dorbath, L. (2008), Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace, France): Implications for the characterization of the geothermal reservoir properties, Pure appl. geophys. 165, 797–828.Google Scholar
  9. Douglas, A, Bowers, D., and Young, J.B. (1997), On the onset of P seismograms, Geophys. J. Int. 129, 681-690.Google Scholar
  10. Expertengruppe (2010), Das seismische Ereignis bei Landau vom 15. August 2009. Abschlussbericht,, last access 31. Oct. 2013.
  11. Faber, S., Bonjer, K.-P., Brüstle, W., and Deichmann, N. (1994), Seismicity and structural complexity of the Dinkelberg block, southern Rhine Graben, Geophys. J. Int. 116, 393-408.Google Scholar
  12. Frietsch, M., (2013) Seismische Scherwellenanisotropie der Oberkruste in der Südpfalz, diploma thesis, Karlsruhe Institute of Technology, Geophysical Institute, in German.Google Scholar
  13. GeORG-Projektteam (2013), Geopotenziale des tieferen Untergrundes im Oberrheingraben, Fachlich-Technischer Abschlussbericht des Interreg-Projekts GeORG, Teile 1–4. – Internet (PDF-Dokument:, last access 27. Oct. 2013).
  14. Granet, M., Glahn, A., and Achauer, U. (1998), Anisotropic measurements in the Rhinegraben area and the French Massif Central: geodynamic implications, Pure appl. geophys. 151, 333-364.Google Scholar
  15. Groos, J., and Ritter, J. (2010), Seismic noise: A challenge and opportunity for seismological monitoring in densely populated areas, in Ritter, J., and Oth, A. (eds.) Proceedings of the Workshop: Induced Seismicity, Cahiers du Centre Européen de Géodynamique et de Séismologie 30, 87-97.Google Scholar
  16. Groos, J., Zeiß, J., Grund, M., and Ritter, J. (2013), Microseismicity at two geothermal power plants at Landau and Insheim in the Upper Rhine Graben, Germany, Geophys. Res. Abstr., 15, EGU2013-2742.Google Scholar
  17. Kendall, J.-M., Stuart, G.W., Ebinger, C.J., Bastow, I.D., and Keir, D. (2005), Magma-assisted rifting in Ethiopia, Nature, 433, 146-148.Google Scholar
  18. Liu, E., and Crampin, S. (1990), Effects of the internal shear wave window: Comparison with anisotropy induced splitting, J. geophys. Res. 95, 11,275-11,281.Google Scholar
  19. Moninger, R., (1985) Neotektonische Bewegungsmechanismen im mittleren Oberrheingraben, dissertation, Universität Karlsruhe (TH), Germany, in German.Google Scholar
  20. Peters, G., and van Balen, R.T., (2007), Tectonic geomorphology of the northern Upper Rhine Graben, Germany, Global and Planetary Change 58, 310-334.Google Scholar
  21. Plenefisch, T., Faber, S. and Bonjer, K.-P. (1994), Investigations of Sn and Pn phases in the area of the upper Rhine Graben and northern Switzerland, Geophys. J. Int. 119, 402-420.Google Scholar
  22. Plenefisch, T., and Bonjer, K.-P. (1997), The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters, Tectonophysics 275, 71-97.Google Scholar
  23. Plenkers, K., Ritter, J.R.R., and Schindler, M. (2013), Low signal-to-noise event detection based on waveform stacking and cross-correlation: application to a stimulation experiment, J. Seismol. 17, 27-49.Google Scholar
  24. Plešinger, A., Hellweg, M., and Seidl, D. (1986), Interactive high-resolution polarization analysis of broad-band seismograms, J. Geophysics 59, 129-139.Google Scholar
  25. Ritter, J.R.R., and Wagner, M. (2008), High-resolution SKS anisotropy indicates asthenospheric flow below SW Germany, Geophys. Res. Abs. 10, EGU2008-03951.Google Scholar
  26. Ritter, J.R.R., Wagner, M., Bonjer, K.-P., and Schmidt B. (2009), The Heidelberg and Speyer earthquakes and their relationships to active tectonics in the central Upper Rhine Graben, Int. J. Earth Sci. 98, 697-705.Google Scholar
  27. Ritter, J., Gassner, L., and Groos, J. (2013), Fault plane solutions of microseismic events near Landau and Insheim, SW Germany, Geophys. Res. Abstr. 15, EGU2012-5630.Google Scholar
  28. Rummel, F., Möhring-Erdmann, G., and Baumgärtner, J., (1986), Stress constraints and hydrofracturing stress data for the continental crust, Pure appl. geophys. 124, 875-895.Google Scholar
  29. Schad, A. (1962), Das Erdölfeld Landau, Abh. geol. Landesamt Baden-Württemberg 4, 81-101.Google Scholar
  30. Schindler, M., Baumgärtner, J., Gandy, T., Hauffe, P., Hettkamp, T., Menzel, H., Penzkofer, P., Teza, D., Tischner, T., and Wahl, G. (2010), Successful hydraulic stimulation techniques for electric power production in the Upper Rhine Graben, Central Europe. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 7 pages.Google Scholar
  31. Schweitzer, J. (2001), HYPOSAT—an enhanced routine to locate seismic events, Pure applied Geophys. 158, 277-289.Google Scholar
  32. Simpson, D.W. (1986), Triggered earthquakes, Ann. Rev. Earth Planet. Sci. 14, 21-42.Google Scholar
  33. Valley, B., and Evans, K.F. (2007), Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations, Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, SGP-TR-183.Google Scholar
  34. Zeiß, J. (2013), Präzise Lokalisierung mikroseismischer Ereignisse im Umfeld geothermischer Kraftwerke in der Südpfalz, diploma thesis, Karlsruhe Institute of Technology, Geophysical Institute, in German.Google Scholar
  35. Zheng, Z. (2000), Seismic anisotropy due to stress-induced cracks, Int. J. Rock Mech. Mining Sci. 37, 39-49.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Michael Frietsch
    • 1
  • Jörn C. Groos
    • 1
  • Joachim R. R. Ritter
    • 1
    Email author
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations