Pure and Applied Geophysics

, Volume 172, Issue 7, pp 2025–2043 | Cite as

Complexity Phenomena and ROMA of the Earth’s Magnetospheric Cusp, Hydrodynamic Turbulence, and the Cosmic Web

  • Tom Chang
  • Cheng-chin Wu
  • Marius Echim
  • Hervé Lamy
  • Mark Vogelsberger
  • Lars Hernquist
  • Debora Sijacki


“Dynamic complexity” is a phenomenon observed for a nonlinearly interacting system within which multitudes of different sizes of large scale coherent structures emerge, resulting in a globally nonlinear stochastic behavior vastly different from that which could be surmised from the underlying equations of interaction. A characteristic of such nonlinear, complex phenomena is the appearance of intermittent fluctuating events with the mixing and distribution of correlated structures on all scales. We briefly review here a relatively recent method, ROMA (rank-ordered multifractal analysis), explicitly developed for analysis of the intricate details of the distribution and scaling of such types of intermittent structure. This method is then used for analysis of selected examples related to the dynamic plasmas of the cusp region of the Earth’s magnetosphere, velocity fluctuations of classical hydrodynamic turbulence, and the distribution of the structures of the cosmic gas obtained by use of large-scale, moving mesh simulations. Differences and similarities of the analyzed results among these complex systems will be contrasted and highlighted. The first two examples have direct relevance to the Earth’s environment (i.e., geoscience) and are summaries of previously reported findings. The third example, although involving phenomena with much larger spatiotemporal scales, with its highly compressible turbulent behavior and the unique simulation technique employed in generating the data, provides direct motivation for applying such analysis to studies of similar multifractal processes in extreme environments of near-Earth surroundings. These new results are both exciting and intriguing.


Fractals ROMA magnetospheric cusp fluid turbulence cosmic gas 



This research is partially supported by the US National Science Foundation and the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement no. 313038/STORM. Tom Chang wishes to thank Dr. Diego Perigini for inviting him to present this combined review and report of new findings related to ROMA at the 6th International Conference on Fractals and Dynamic Systems in Geoscience in the spirit of providing cross-discipline fertilization/exchange of scientific techniques and ideas in modern fractal analysis.


  1. Bird, S., Vogelsberger, M., Sijacki, D., Zaldarriaga, M., Springel, V., and Hernquist, L. (2013), Moving mesh cosmology: properties of neutral hydrogen in absorption, Mon. Not. R. Astron., Soc., 429, 3341.Google Scholar
  2. Chang, T. (2014), An Introduction to Space Plasma Complexity, Cambridge University Press, New York, NY.Google Scholar
  3. Chang, T., Wu, C. C., Podesta, Echim, M., Lamy, H., and Tam, S. W. Y. (2010), ROMA (rank-ordered multifractal analyses) of intermittency in space plasmasa brief tutorial review, Nonlinear Processes in Geophysics, 17, 545.Google Scholar
  4. Chang, T., and Wu, C. C. (2008), Rank-ordered multifractal spectrum for intermittent fluctuations, Phys. Rev. E, 77, 045401(R), doi: 10.1103/Phys. Rev. E.77045401.
  5. Chang, T., Tam, S. W. Y., and Wu, C. C. (2004), Complexity induced anisotropic bimodal intermittent turbulence in space plasmas, Phys. Plasmas, 11, 1287.Google Scholar
  6. Chang, T., Hankey, A., and Stanley, H. E. (1973) Generalized scaling hypothesis in multicomponent systems. 1. Classification of critical points by order and scaling at tricriical points, Phys. Rev. B, 8, 346.Google Scholar
  7. Consolini, G. and De Michelis, P. (2011), Rank ordering multifractal analysis of the auroral electrojet index, Nonlinear Processes in Geophysics, 18, 277.Google Scholar
  8. Echim, M. M., Lamy, H., and Chang, T. (2007), Multipoint observations of intermittency in the cusp regions, Nonlinear Processes in Geophysics, 14, 325.Google Scholar
  9. Echim, M, and Lamy, H. (2010), private communicationGoogle Scholar
  10. Eisenstein, D.J., and Hu, W. (1999), Power Spectra for Cold Dark Matter and Its Variants, Ap. J., 511, 5, doi: 10.1086/306640.
  11. Fang, F. (2006), Information of structures in galaxy distribution, Ap. J., 644, 678.Google Scholar
  12. Frisch, U. (1995), Turbulence, Cambridge University Press, Cambridge, UK.Google Scholar
  13. Hernquist, L., Katz, N., Weinberg, D. H., and Miralda-Escudé, J. (1996), The Lyman-Alpha forest in the cold dark matter model, Ap. J., 457, L51.Google Scholar
  14. Hnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., and Farrell, W. M. (2002), Finite size scaling in the solar wind magnetic field energy density as seen by WIND, Geophys. Res. Lett., 29, 1446, doi: 10.1029/2001GL014587.
  15. Komatsu, E., et al. (2011), Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Ap. JS, 192, 18.Google Scholar
  16. Lamy, H., M. Echim, and T. Chang (2008), Rank-ordered multifractal spectrum of intermittent fluctuations in the cusp: a case study with Cluster data, 37th COSPAR Scientific Assembly, Paper D31-0017-08, p. 1686.Google Scholar
  17. Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., and Meneveau, C. (2008), A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence, J. Turbulence, 9, 1, 2008.Google Scholar
  18. Liddle, A. (2013), An Introduction to Modern Cosmology, Wiley, Chichester, West Sussex, UKGoogle Scholar
  19. Lovejoy, S., Garrido, P., and Schertzer, D. (2000), Multifractal absolute galactic luminosity distributions and the multifractal Hubble 3/2 law, Physica A, 287, 49.Google Scholar
  20. Peebles, P. (1980), The large Scale Structure of the Universe, Princeton University Press, Princeton, NJ.Google Scholar
  21. Perlman, E., Burns, R., Li, Y., and Meneveau, C. (2007), Data exploration of turbulence simulations using a database cluster, Supercomputing SC07, ACM, IEEE, doi: 10.1145/1362622, 1362654.
  22. Permutter, S., et al., (1999), Measurements of Ω and Λ from 42 high-redshift supernovae, Ap. J., 517, 565.Google Scholar
  23. Press, W. H., and Schechter, P. (1974), Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, Ap. J., 187, 425.Google Scholar
  24. Riess, a., et al. (1999), The rise time of nearby Type Ia supernovae, Ap. J., 118, 2268.Google Scholar
  25. Springel, V. (2010), E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron., Soc., 401, 791.Google Scholar
  26. Springel, V., and Hernquist, L. (2003), The history of star formation in a Λ cold dark matter universe, Mon. Not. R. Astron., Soc., 339, 312.Google Scholar
  27. Tam, S. W. Y., et al. (2010), Rank ordered multifractal analysis for intermittent fluctuations with global crossover behavior, Phys. Rev. E, 81, 036404.Google Scholar
  28. Taylor, G. I. (1938), The spectrum of turbulence, Proc. Royal Soc. London A, 164, 476.Google Scholar
  29. Torrey, P., Vogelsberger, M., Genel, S., Sijacki, D., Springel, V., and Hernquist, L. (2013), A physical model for cosmological simulations of galaxy formation: multi-epoch, arXiv:1305.4931v1.
  30. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., Hernquist, L. (2012), Moving mesh cosmology: numerical techniques and global statistics, Mon. Not. R. Astron., Soc., 425, 3024.Google Scholar
  31. Vogelsberger, M., Genel, S., Sijacki, D., Torrey, P., Springel, V., and Hernquist, L. (2013), A model for cosmological simulations of galaxy formation physics, arXiv:1305.2913v3.
  32. Wu, C. C., and Chang, T. (2011), Rank-ordered multifractal analysis (ROMA) of probability distributions in fluid turbulence, Nonlinear Processes in Geophysics, 18, 261.Google Scholar
  33. Yordanova, E., Grezesiak, M, Wernik, A.W., Popielawska, B. and Stasiewicz, K. (2004), Multifractal structure of turbulence in the magnetospheric cusp, Ann. Geophys., 22, 2431.Google Scholar
  34. Yordanova, E., Bergman, J., Consolini, G., Kretzschmar, M., Materassi, M., Popielawska, B., Roca-Sogorb, M., Stasiewicz, K., and Wernik, A.W., Anisotropic scaling features and complexity in magnetospheric-cusp: a case study, Nonlinear Processes in Geophysics, 12, 817, 2005.Google Scholar
  35. Zhu, W., Feng, L.-L., and Fang, L.Z. (2011), Intermittence of the map of the kinetic Sunyaev-Zel’dovich effect and turbulence of the intergalactic medium, Ap. J. Lett., 734, L14.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tom Chang
    • 1
  • Cheng-chin Wu
    • 2
  • Marius Echim
    • 3
    • 4
  • Hervé Lamy
    • 3
  • Mark Vogelsberger
    • 1
  • Lars Hernquist
    • 5
  • Debora Sijacki
    • 6
  1. 1.Kavli Institute for Astrophysics and Space ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute of Geophysics and Planetary PhysicsUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Belgian Institute for Space AeronomyBrusselsBelgium
  4. 4.Institute for Space SciencesBucharestRomania
  5. 5.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  6. 6.Institute of AstronomyUniversity of CambridgeCambridgeUK

Personalised recommendations