Pure and Applied Geophysics

, Volume 172, Issue 2, pp 283–293 | Cite as

Lowermost Mantle Velocity Estimations Beneath the Central North Atlantic Area from Pdif Observed at Balkan, East Mediterranean, and American Stations

  • Marian IvanEmail author
  • Daniela Veronica Ghica
  • Andrej Gosar
  • Panagiotis Hatzidimitriou
  • Rami Hofstetter
  • Gulten Polat
  • Rongjiang Wang


Lowermost mantle velocity in the area 15°S–70°N latitude/60°W–5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35–65°N) × (40–20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.


Pdif slowness tomography Cape Verde Azores Super-plume root D″ layer Central North Atlantic area 



The authors express their deep gratitude to people from IRIS, GEOFON, and ORFEUS DMC for their support in acquiring the input data for this study. GMT software (Wessel and Smith 1996) was used to draw figures. Professor Zhao kindly provided the 3-D global velocity model in a digital format. We thank Satoshi Kaneshima, Pawel Wiejacz, and two anonymous reviewer for valuable comments. Distances have been evaluated with the routine of Brown (1984) incorporated in Herrmann’s Computer Programs in Seismology. Ellipticity corrections have been evaluated with a routine available at RSES, ANU.


  1. Alexander S.S. & Phinney R.A., 1966. A study of the core-mantle boundary using P waves diffracted by the earth’s core, J. Geophys. Res., 71, 5943–5958.Google Scholar
  2. Brown, R.J., 1984. On the determination of source-receiver distances using a new equidistant latitude, Geophys. J. R. astr. Soc., 76, 445–459.Google Scholar
  3. Garnero, E.J., Revenaugh, J.S., Williams, Q., Lay, T. & Kellogg, L.H., 1998. Ultralow velocity zone at the core-mantle boundary. In: The Core-Mantle Boundary, pp. 319–334, eds Gurnis, M., Wysession, M.E., Knittle, E. and Buffet, B.A., American Geophysical Union.Google Scholar
  4. Gilbert, F. & Backus, G.E., 1966. Propagator matrices in elastic and vibration problems, Geophys., 31, 326–332.Google Scholar
  5. Karason, H. & van der Hilst, R.D., 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106, 6569–6587.Google Scholar
  6. Kennett, B.L.N. & Engdahl, E.R., 1991. Travel times for global earthquake location and Phase identification, Geophys. J. Int., 106, 429–465.Google Scholar
  7. Kennett, B. L. N., Engdahl, E. R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124.Google Scholar
  8. Knopoff L. & Gilbert F., 1961. Diffraction of elastic waves by the core of the earth, Bull. Seis. Soc Am., 51, 35-49.Google Scholar
  9. Li, C., van der Hilst, R.D., Engdahl, E.R. & Burdick, S., 2008. A new global model for P wave speed variations in Earth’s mantle, Geochem. Geophys. Geosyst., 9, Q05018, doi: 10.1029/2007GC001806.
  10. Loper, D.E. & Lay, T., 1995. The core-mantle boundary region, J. Geophys. Res., 100, 6397–6420.Google Scholar
  11. Masters, G., Laske, G., Bolton, H. & Dziewonski, A., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure in: Earth’s Deep Interior Mineral Physics and Tomography From the Atomic to the Global Scale,Vol. 117: Geophysical Monograph Series, pp. 63–87, eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L., American Geophysical Union.Google Scholar
  12. McNamara, A. K., Garnero, E.J. & Rost, S., 2010. Tracking deep mantle reservoirs with ultra-low velocity zones, Earth Planet. Sci. Lett., 299, 1–9, doi: 10.1016/j.epsl.2010.07.042.
  13. Montagner, J.-P. & Kennett, B. L. N., 1996. How to reconcile body-wave and normal-mode reference Earth models? Geophys. J. Int., 125, 229–248.Google Scholar
  14. Montelli, R., Nolet, G., Dahlen, F.A. & G. Masters, G., 2006. A catalogue of deep mantle plumes: New results from finite frequency tomography, Geochem. Geophys. Geosyst., 7, Q11007, doi: 10.1029/2006GC001248.
  15. Mooney, W., Laske, G. & Master, G., 1998. CRUST 5.1: a global crustal model at 5° x 5°, J. Geophys. Res. 103, 727–747.Google Scholar
  16. Mula A.H. & Muller G., 1980. Ray parameters of diffracted long period P and S waves and the velocities at the base of the mantle, Pageoph, 118, 1272–1292.Google Scholar
  17. Ni, S. & Helmberger, D.V., 2001. Horizontal transition from fast to slow structures at the core-mantle boundary; South Atlantic, Earth Planet. Sci. Lett., 187, 301–310.Google Scholar
  18. Pearce, J. & Mittleman, D., 2002. Defining the Fresnel zone for broadband radiation, Phys. Rev., E 66, 1–4.Google Scholar
  19. Ritsema, J., Ni, S., Helmberger, D.V. & Crotwell, H.P., 1998. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa, Geophys. Res. Lett., 25, 4245–4248.Google Scholar
  20. Rost, S. & Garnero, E.J., 2006. Detection of an ultralow velocity zone at the core-mantle boundary using diffracted PKKPab waves, J. Geophys. Res., 111, B07309, doi: 10.1029/2005JB003850.
  21. Sacks, I.S., 1967. Diffracted P-wave studies of the earth’s core, 2. Lower mantle velocity, core size, lower mantle structure, J. Geophys. Res., 72, 2589–2594.Google Scholar
  22. Sidorin, I., Gurnis, M. & Helmberger, D.V, 1999. Dynamics of a phase change at the base of the mantle consistent with seismological observations, J. Geophys. Res., 104, 15005–15023.Google Scholar
  23. Souriau, A. & Poupinet G. (1994). Lateral variations in P velocity and attenuation in the D” layer from diffracted P waves, Phys. Earth. Planet. Int., 84, 227–234.Google Scholar
  24. Sylvander, M., Ponce, B. & Souriau, A., 1997. Seismiv velocities at the core-mantle boundary inferred from P waves diffracted around the core, Phys. Earth Planet. Inter., 101, 189-202.Google Scholar
  25. Takeuchi, H. & Saito, M., 1972. Seismic surface waves. In: Bolt, B.A. (Ed.) Seismology: Surface Waves and Earth Oscillations, Methods in Computational Physics, v.11, 217-295. New York, Academic Press.Google Scholar
  26. Taylor, J.R., 1982. An Introduction Error Analysis, University Science Books.Google Scholar
  27. Tkalčić, H., Romanowicz, B. & Houy, N., 2002. Constraints on D″ structure using PKP(AB-DF), PKP(BC-DF) and PcP-P travel time data from broadband records, Geophys. J. Int., 149, 599–616.Google Scholar
  28. Thorne, M.S. & Garnero, E.J., 2004. Inferences on ultralowvelocity zone structure from a global analysis of SPdKS waves, J. Geophys. Res., 109, B08301, doi: 10.1029/2004JB003010.
  29. Valenzuela, R.W. & Wysession, M.E., 1998. Illuminating the base of the mantle with diffracted waves, in The Core-Mantle Boundary Region, Geodyn Ser, Vol. 28, edited by M. Gurnis, M.E. Wysession, E. Knittle, & B.A. Buffett, pp. 273–297, AGU, Washington, D.C.Google Scholar
  30. Wessel, P. & Smith, W.H.F., 1996. A global, self-consistent, hierarchical, high-resolution shoreline database, J.Geophys.Res., 104, 4795–4809.Google Scholar
  31. Wang, R., 1999. A simple orthonormalization method for the stable and efficient computation of Green’s functions, Bull. Seismol. Soc. Amer., 89, 733–741.Google Scholar
  32. Williams, Q., Revenaugh, J. & Garnero, E., 1998. A correlation between ultra-low basal velocities in the mantle and hot spots, Science, 281, 546–549.Google Scholar
  33. Wysession, M.E. & Okal, E.A., 1988. Evidence for lateral heterogeneity at the core-mantle boundary from the slowness of diffracted S profiles, in Structure and Dynamics of Earth’s Deep Interior, Geophys Monogr Ser, Vol. 46, edited by D.E. Smylie & R. Hide, pp. 55–63, AGU, Washington, D.C.Google Scholar
  34. Wysession, M.E. & Okal, E.A., 1989. Regional analysis of D” velocities from the ray parameters of diffracted P profiles, Geophys. Res. Lett., 16, 1417–1420.Google Scholar
  35. Wysession, M.E., Okal, E.A. & Bina C.R., 1992. The structure of the core-mantle boundary from diffracted waves, J Geophys Res, 97, 8749–8764.Google Scholar
  36. Xu, Y. & Koper, K.D., 2009. Detection of a ULVZ at the base of the mantle beneath the northwest Pacific, Geophys. Res. Lett., 36(L17301), doi: 10.1029/2009GL039387.
  37. Zhao, D., 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet. Inter., 146, 3–34.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Marian Ivan
    • 1
    • 2
    Email author
  • Daniela Veronica Ghica
    • 2
  • Andrej Gosar
    • 3
  • Panagiotis Hatzidimitriou
    • 4
  • Rami Hofstetter
    • 5
  • Gulten Polat
    • 6
  • Rongjiang Wang
    • 7
  1. 1.University of BucharestBucharestRomania
  2. 2.National Institute for Earth PhysicsBucharestRomania
  3. 3.University of LjubljanaLjubljanaSlovenia
  4. 4.Department of Geophysics, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  5. 5.Geophysical Institute of IsraelLodIsrael
  6. 6.Kandilli ObservatoryBogazici UniversityIstanbulTurkey
  7. 7.Helmholtz Center PotsdamGFZ German Research Center for GeosciencesPotsdamGermany

Personalised recommendations