Advertisement

Pure and Applied Geophysics

, Volume 172, Issue 2, pp 389–413 | Cite as

Model Space Exploration for Determining Landslide Source History from Long-Period Seismic Data

  • Juan Zhao
  • Laurent Moretti
  • Anne Mangeney
  • Eléonore Stutzmann
  • Hiroo Kanamori
  • Yann Capdeville
  • Eliza S. Calder
  • Clément Hibert
  • Patrick J. Smith
  • Paul Cole
  • Anne LeFriant
Article

Abstract

The seismic signals generated by two large volcanic debris avalanches (Montserrat, Lesser Antilles, 1997 and Mount St. Helens, USA, 1980) and a large rock-ice avalanche (Mount Steller, USA, 2005) have been analyzed. For the two debris avalanches, given the times and locations of such landslides, their signals were recorded by only a few seismic stations. Moreover, these signals cover only a very narrow frequency band and include considerable noise. The Mount Steller, on the contrary, was precisely recorded. For each event, the source mechanism (i.e., point force) has been determined by waveform inversion using at most two broadband seismic stations. The resulting force is very difficult to interpret in terms of landslide characteristics. A Monte-Carlo inversion was therefore performed by imposing a simple force model associated with the landslide, based on the schematic view of an accelerating/decelerating mass traveling down the slope. The best parameter set of the force model was then found by minimizing misfits and maximizing correlations between data and synthetic signals. This model appears to contain the minimum degree of complexity required to well reproduce the seismic data. We detail here the method for the Montserrat debris avalanche and then present it’s validation on the well studied Mount St. Helens debris avalanche and the well recorded Mount Steller rock-ice avalanche. The horizontal and vertical components of the resulting force have different source time functions. The best force model compares well with the force obtained by waveform inversion. Finally, this simple force model was interpreted using analytical and empirical relations derived from the sliding block model, granular flow model and landslide studies. This made it possible to estimate the order of magnitude of the mass, flow duration and direction, initial topography slope, mean velocity and travel distance of the avalanches. For these three avalanches, the calculated characteristics are consistent with former studies.

Keywords

Landslides Seismology Inversion 

Notes

Acknowledgments

We thank Joan L. Latchman, Gaël Burgos, Martin Vallée and Jean-Pierre Vilotte for useful discussions. This work was supported by ANR LANDQUAKES, the QUEST European Training network, the Seismological and Volcanological Observatories of IPGP and the European funding ERC-CG-2013-PE10-617472: ERC SLIDEQUAKES.

Supplementary material

24_2014_852_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1352 kb)

References

  1. Allstadt, K. (2013), Extracting Source Characteristics and Dynamics of the August 2010 Mount Meager Landslide from Broadband Seismograms, J. Geophys. Res. Earth Surface, 118(3), 1472–1490.Google Scholar
  2. Bouchut, F., A. Mangeney-Castelnau, B. Perthame, and J. P. Vilotte (2003), A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows, C. R. Acad. Sci. Paris, Ser. I, 336, 531–536.Google Scholar
  3. Brodsky, E. E., E. Gordeev, and H. Kanamori (2003), Landslide basal friction as measured by seismic waves, Geophys. Res. Lett., 30(24), 2236, doi: 10.1029/2003GL018485.
  4. Chen, X., P. M. Shearer, F. Walter, and H. A. Fricker (2011), Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images, J. Geophys. Res., doi: 10.1029/2011JB008262.
  5. Christiansen, R.L., D. W. Peterson (1981), Chronology of the 1980 Eruptive activity, The 1980 Eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p 844.Google Scholar
  6. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Physics of The Earth and Planetary Interiors, 25(4), 297–356.Google Scholar
  7. Ekström, G., M. Nettles, and G. A. Abers (2003), Glacial Earthquakes, Science, 302(5645), 622–624.Google Scholar
  8. Ekström, G., and Stark, C. P. (2013). Simple Scaling of Catastrophic Landslide Dynamics, Science, 339, 1416.Google Scholar
  9. Farin, M., A. Mangeney, and O. Roche (2014), Fundamental changes of granular flow dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments, J. Geophys. Res. Earth Surf., 119, doi: 10.1002/2013JF002750
  10. Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010), Numerical modeling of landquakes, Geophys. Res. Lett., 37, L15305.Google Scholar
  11. Gilbert, F., and Dziewonski, A. M. (1975). An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 187–269.Google Scholar
  12. Glicken, H. (1986). Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington (Doctoral dissertation, University of California, Santa Barbara.).Google Scholar
  13. Hibert, C., Mangeney, A., Grandjean, G., and Shapiro, N. M. (2011). Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics. Journal of Geophysical Research: Earth Surface (20032012), 116(F4).Google Scholar
  14. Huggel, C., J. Caplan-Auerbach, B. Molnia, and R. Wessels (2008), The 2005 Mt. Steller, Alaska, rock-ice avalanche: A large slope failure in cold permafrost, paper presented at Ninth International Conference on Permafrost, Univ. of Alaska Fairbanks, Fairbanks, 29 June to 3 July.Google Scholar
  15. Kanamori, H., and J. W. Given (1982), Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens - a terrestrial monopole, J. Geophys. Res., 87, 5422–5432.Google Scholar
  16. Kanamori, H., J. W. Given, and T. Lay (1984), Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980, J. Geophys. Res., 89, 1856–1866.Google Scholar
  17. Kawakatsu, H. (1989), Centroid single force inversion of seismic-waves generated by landslides, J. Geophys. Res., 94(B9), 12363–12374.Google Scholar
  18. Kelfoun, K., Druitt T.H., 2005, Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J. Geophys. Res., 110, B12202.Google Scholar
  19. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, and E. D. Pezzo (2004), Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy, Bulletin of the Seismological Society of America, Vol. 94, No. 5, pp. 1850–1867.Google Scholar
  20. Legros, F. (2002). The mobility of long-runout landslides. Engineering Geology, 63(3), 301–331.Google Scholar
  21. Lin, C. H., H. Kumagai, M. Ando, and T. C. Shin (2010), Detection of landslides and submarine slumps using broadband seismic networks, J. Geophys. Res., Vol. 37, L22309, doi: 10.1029/2010GL044685.
  22. Lucas, A., Mangeney, A., and Ampuero, J. P., (2014). Frictional weakening in landslides on Earth and on other planetary bodies, Nature communication 5. Google Scholar
  23. Mangeney-Castelnau, A., Vilotte, J. P., Bristeau, M. O., Perthame, B., Bouchut, F., Simeoni, C., and Yerneni, S. (2003). Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research, 108(B11), 2527.Google Scholar
  24. Mangeney, A., F. Bouchut, N. Thomas, J. P. Vilotte, and M. O. Bristeau (2007), Numerical modeling of self-channeling granular flows and of their levee-channel deposits, J. Geophys. Res., 112, F02017, doi: 10.1029/2006JF000469.
  25. Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Christian Huggel, C., Schneider, D., and Francois Bouchut, F., (2012). Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves, Geophys. Res. Lett., 39, L16402.Google Scholar
  26. Petley, D. (2011). Damming events at Attabad. International Water Power and Dam Construction, 63(2), 27–29.Google Scholar
  27. Roche, O., S. Montserrat, Y. Nino, and A. Tamburrino (2008). Experimental observations of water-like behavior of initially fluidized, unsteady dense granular flows and their relevance for the propagation of pyroclastic flows. J. Geophys. Res., 113, B12203.Google Scholar
  28. Pirulli, M., and Mangeney, A., 2008. Result of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology, Rock Mech. Rock Eng., 41(1), 59–84.Google Scholar
  29. Sambridge, M., and Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 3–1.Google Scholar
  30. Sparks, R. S. J., J. Barclay, E. S. Calder, R. A. Head, J.-C. Komorowski, R. Luckett, G. E. Norton, L. J. Ritchie, B. Voight, and A. W. Woods (2002), Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufrière Hills Volcano, Montserrat in The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 409–434.Google Scholar
  31. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM.Google Scholar
  32. Tsai, V. C., and G. Ekström (2007), Analysis of glacial earthquakes, J. Geophys. Res., 112, F03S22, doi: 10.1029/2006JF000596.
  33. Voight, B., Komorowski, J. C., Norton, G. E., Belousov, A. B., Belousova, M., Boudon, G., Francis, P.W., Franz, W., Heinrich, P., Sparks, R.S.J., Young, S. R. (2002). The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills volcano, Montserrat. in The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 363–408.Google Scholar
  34. Voivret, C., Radjai, F., Delenne, J.Y., El Youssoufi, M. S. (2007). Space-filling properties of polydisperse granular media, Physical Review E, 76, 021301, 2007.Google Scholar
  35. Ward, S. N. and S. Day, 2006. A particulate kinematic model for large debris avalanches: Interpretation of debris avalanche deposits and landslide seismic signals of Mount St. Helens, May 18th 1980. Geophys. J. Int., 167, 991–1004, doi: 10.1111/j.1365-246X.2006.03118.x.
  36. Yamada, M., Y. Matsushi, M. Chigira, and J. Mori (2012), Seismic recordings of landslides caused by Typhoon Talas (2011), Japan, Geophys. Res. Lett., 39, L13301 doi: 10.1029/2012GL052174.
  37. Yamada, M., H. Kumagai, Y. Matsushi, and T. Matsuzawa (2013), Dynamic landslide processes revealed by broadband seismic records, Geophys. Res. Lett., 40, 2998–3002, doi: 10.1002/grl.50437.

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Juan Zhao
    • 1
    • 2
  • Laurent Moretti
    • 1
  • Anne Mangeney
    • 1
    • 3
  • Eléonore Stutzmann
    • 1
  • Hiroo Kanamori
    • 4
  • Yann Capdeville
    • 5
  • Eliza S. Calder
    • 6
  • Clément Hibert
    • 1
    • 7
  • Patrick J. Smith
    • 8
    • 9
    • 10
  • Paul Cole
    • 8
    • 9
    • 10
  • Anne LeFriant
    • 1
  1. 1.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniv. Paris Diderot, UMR 7154 CNRSParisFrance
  2. 2.Faculty of Mechanical and Electronic InformationChina University of GeosciencesWuhanChina
  3. 3.ANGE Team, INRIA, CETMEFParisFrance
  4. 4.Seismological LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Laboratoire de Planétologie et Géodynamique de NantesNantesFrance
  6. 6.School of GeosciencesUniversity of EdinburghEdinburghUK
  7. 7.Bureau des Recherches Géologiques et MinièresRNSC/RMTOrléansFrance
  8. 8.Montserrat Volcano ObservatoryMontserratWest Indies
  9. 9.Seismic Research CentreUniversity of the West IndiesTrinidad and TobagoWest Indies
  10. 10.British Overseas TerritoryCaribbeanWest Indies

Personalised recommendations