Advertisement

Pure and Applied Geophysics

, Volume 171, Issue 11, pp 3159–3174 | Cite as

The Fluid Dynamics of Solid Mechanical Shear Zones

  • E. VeveakisEmail author
  • K. Regenauer-Lieb
Article

Abstract

Shear zones in outcrops and core drillings on active faults commonly reveal two scales of localization, with centimeter to tens of meters thick deformation zones embedding much narrower zones of mm-scale to cm-scale. The narrow zones are often attributed to some form of fast instability such as earthquakes or slow slip events. Surprisingly, the double localisation phenomenon seem to be independent of the mode of failure, as it is observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In both, a very thin layer of chemically altered, ultra fine grained ultracataclasite or ultramylonite is noted. We present an extension to the classical solid mechanical theory where both length scales emerge as part of the same evolutionary process of shearing the host rock. We highlight the important role of any type of solid-fluid phase transitions that govern the second degree localisation process in the core of the shear zone. In both brittle and ductile shear zones, chemistry stops the localisation process caused by a multiphysics feedback loop leading to an unstable slip. The microstructural evolutionary processes govern the time-scale of the transition between slow background shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic fragmentation processes are limiting the rates of forming the ultracataclasites in the brittle domain, while the slow dynamic recrystallisation prolongs the transition to ultramylonites into a slow slip instability in the ductile realm.

Keywords

Cataclastic fault zone mylonitic shear zone chemical reactions state variables 

References

  1. Alevizos, S., Poulet, T., Veveakis, E.: Thermo-poro-mechanics of chemically active creeping faults. 1: Theory and steady state considerations. J. Geophys. Res. pp. In Press, 2014. doi: 10.1002/2013JB010070.
  2. Allam, A.A., Ben-Zion, Y.: Seismic velocity structures in the southern california plate-boundary environment from double-difference tomography. Geophys. J. Int. 190, 1181–1196 (2012). doi: 10.1111/j.1365-246X.2012.05544.x.
  3. Ben-Zion, Y., Sammis, C.G.: Characterization of fault zones. Pure Appl. Geophys. 160, 677–715 (2003).Google Scholar
  4. Brantut, N., Han, R., Shimamoto, T., Findling, N., Schubnel, A.: Fast slip with inhibited temperature rise due to mineral dehydration: evidence from experiments on gypsum. Geology 39(1), 59–62 (2011).Google Scholar
  5. Brantut, N., Schubnel, A., Corvisier, J., Sarout, J.: Thermochemical pressurization of faults during coseismic slip. J. Geophys Res. 115, B05,314 (2010).Google Scholar
  6. Brantut, N., Sulem, J., Schubnel, J.: Effect of dehydration reactions on earthquake nucleation: Stable sliding, slow transients and unstable slip. J. Geophys Res. 116, B05,304 (2011). doi: 10.1029/2010JB007876.
  7. Cecinato, F., Zervos, A., Veveakis, E.: A thermo-mechanical model for the catastrophic collapse of large landslides. International Journal for Numerical and Analytical Methods in Geomechanics 35(14), 1507–1535 (2011). doi: 10.1002/nag.963.
  8. Chester, F., Chester, J.: Ultracataclasite structure and friction processes of the punchbowl fault, san andreas system, california. Tectonophysics pp. 199–221 (1998).Google Scholar
  9. Chester, F.M., Evans, J.P., Biegel, R.L.: Internal structure and weakening mechanisms of the san andreas fault. Journal of Geophysical Research: Solid Earth 98(B1), 771–786 (1993). doi: 10.1029/92JB01866..
  10. Chrysochoos, A., Belmahjoub, F.: Thermographic analysis of thermomechanical couplings. Archives Mechanics 44(1), 55–68 (1992).Google Scholar
  11. Colletini, C., Viti, C., Tesei, T., Mollo., S.: Thermal decomposition along natural carbonate faults duing earthquakes. Geology p. 2013, doi: 10.1130/G34421.1.
  12. Cornet, F., Doan, M., Moretti, I., Borm, G.: Drilling through the active aigion fault: the aig10 well observatory. Comptes Rendus Geosciences 336(4–5), 395–406 (2004).Google Scholar
  13. Einav, I.: Breakage mechanics–part I: theory. Journal of the Mechanics and Physics of Solids 55(6), 1274–1297 (2007a). doi: 10.1016/j.jmps.2006.11.003
  14. Einav, I.: Breakage mechanics–part ii: Modelling granular materials. Journal of the Mechanics and Physics of Solids 55(6), 1298–1320 (2007b). doi: 10.1016/j.jmps.2006.11.004
  15. Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T.: Earthquakes produce carbon dioxide in crustal faults. Earth. Plan. Sci. Let. 265, 487–497 (2008).Google Scholar
  16. Faulkner, D.R., Lewis, A.C., Rutter, E.H.: On the internal structure and mechanics of large strike-slip fault zones: field observations of the carboneras fault in southeastern spain. Tectonophysics 367, 235–251 (2003). 1951, doi: 10.1016/S0040-(03)00134-3.
  17. Ferri, F., DiToro, G., Hirose, T., Shimamoto, T.: Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova 22(5), 347–353 (2010). doi: 10.1111/j.1365-3121.2010.00955.x.
  18. Fowler, A. (ed.): Mathematical Models in the Applied Sciences, 2 edn. Cambridge University Press (1997).Google Scholar
  19. Fujita, C.: On the non-linear equations \(du + e^u = 0\) and \(v_t = dv + e^v\). Bull. Am. Math. Soc. 75, 132–135, (1969). Google Scholar
  20. Han, R., Shimamoto, T., Hirose, T., Ree, J., Ando, J.: Ultralow friction of carbonate faults caused by thermal decomposition. Science 316, 878–881 (2007).Google Scholar
  21. Herwegh, M., Hurzeler, J., pfiffner, O., Schmid, S., Abart, R., Ebert, A.: The glarus thrust: excursion guide and report of a field trip of the swiss tectonic studies groups. Swiss Journal of Geosciences 101(2), 323–340 (2008).Google Scholar
  22. Hill, R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16 (1962).Google Scholar
  23. Hirono, T., et al.: A chemical kinetic approach to estimate dynamic shear stress during the 1999 taiwan chi-chi earthquake. Geophys. Res. Lett. 34, L19,308 (2007). doi: 10.1029/2007GL030743.
  24. Holdsworth, R., van Diggelen, E., Spiers, C., de Bresser, J., Walker, R., Bowen, L.: Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the san andreas fault, California. Journal of Structural Geology 33(2), 132–144 (2011). doi: 10.1016/j.jsg.2010.11.010
  25. Kennedy, L., Logan, J.: The role of veining and dissolution in the evolution of fine -grained ylonites: the mcconnell thrust, Alberta. J. Struct. Geology 19(6), 785–797 (1997).Google Scholar
  26. Lachenbruch, A.: Frictional heating, fluid pressure and the resistance to fault motion. J. Geophys. Res. 85, 6097–6112 (1980).Google Scholar
  27. Lyakhovsky, V., Ben-Zion, Y.: A continuum damage-breakage faulting model accounting for solid-granular transitions. Pure Appl. Geophys. p. Submitted (2014a).Google Scholar
  28. Lyakhovsky, V., Ben-Zion, Y.: Damage-breakage rheology model and solid-granular transition near brittle instability. J. Mech. Phys. Solids 64, 184–197 (2014b). doi: 10.1016/j.jmps.2013.11.007..
  29. Mandel, J.: Conditions de stabilite et postulate de drucker. Rheology and Soil Mechanics pp. 58–67 (1966).Google Scholar
  30. Muhlhaus, H., Vardoulakis, I.: Thickness of shear bands in granular materials. Geotechnique 37(3), 271–283 (1987).Google Scholar
  31. Noda, H., Shimamoto, T.: Thermal pressurization and slip-weakening distance of a fault: an example of the hanaore fault, southwest Japan. Bull. Seism. Soc. Am. 95(4) (2005).Google Scholar
  32. Paola, N.D., Hirose, T., Mitchell, T., Toro, G.D., Togo, T., Shimamoto, T.: Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 39(1), 35–38 (2011).Google Scholar
  33. Papanicolopulos, S., Veveakis, E.: Sliding and rolling dissipation in cosserat plasticity. Granular Matter 13(3), 197–204 (2011).Google Scholar
  34. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966).Google Scholar
  35. Regenauer-Lieb, K., Veveakis, M., Poulet, T., Wellmann, F., Karrech, A., Liu, J., Hauser, J., Schrank, C., Gaede, O., Trefry, M.: Multiscale coupling and multiphysics approaches in earth sciences: applications. Journal of Coupled Systems and Multiscale, Dynamics, 1(3), 2013, doi: 10.1166/jcsmd.2013.1021.
  36. Regenauer-Lieb, K., Veveakis, M., Poulet, T., Wellmann, F., Karrech, A., Liu, J., Hauser, J., Schrank, C., Gaede, O., Trefry, M.: Multiscale coupling and multiphysics approaches in earth sciences: theory. Journal of Coupled Systems and Multiscale Dynamics, 1(1), 49–73 (2013).Google Scholar
  37. Regenauer-Lieb, K., Yuen, D., Fusseis, F.: Landslides, ice quakes, earthquakes: a thermodynamic approach to surface instabilities. Pure. Appl. Geophys, 166(10–11), 1885–1908 (2009).Google Scholar
  38. Reiner, M.: The deborah number. Physics Today pp. 152–153 (1964).Google Scholar
  39. Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111, B05311 (2006). doi: 10.1029/2005JB004006.
  40. Rosakis, P., Rosakis, A., Ravichandran, G., Hodowany, J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000).Google Scholar
  41. Rowe, C., Fagereng, A., Miller, J., Mapani, B.: Signature of coseismic decarbonation in dolomitic fault rocks of the naukluft thrust, Namibia. Earth Plan. Sci. Let. 333–334, 200–210 (2012).Google Scholar
  42. Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975).Google Scholar
  43. Sibson, R.: Interaction between temperature and pore-fluid pressure during earthquake faulting—a mechanism for partial or total stress relief. Nature 243, 66–68 (1973).Google Scholar
  44. Sibson, R.: Thickness of the seismic slip zone. Bull. Seism. Soc. Am. 93, 1169–1178 (2003).Google Scholar
  45. Sulem, J., Famin, V.: Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J. Geophys. Res. 114, B03309 (2009). doi: 10.1029/2008JB006004.
  46. Sulem, J., Lazar, P., Vardoulakis, I.: Thermo-poro-mechanical properties of clayey gouge and application to rapid fault shearing. Int. J. Num. Anal. Meth. Geomechanics 31(3), 523–540 (2007).Google Scholar
  47. Sulem, J., Stefanou, I., Veveakis, E.: Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter 13(3), 261–268 (2011). doi: 10.1007/s10035-010-0244-1.
  48. Sulem J. Vardoulakis I., O.H., Perdikatsis, V.: Thermo-poro-mechanical properties of the aigion fault clayey gouge - application to the analysis of shear heating and fluid pressurization. Soils and Foundations 45, 97–108 (2005).Google Scholar
  49. Taylor, G., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc., Ser. A. 143, 307–326. (1934).Google Scholar
  50. Tobolsky, A., Andrews, R.: Systems manifesting superposed elastic and viscous behaviour. J. Chem. Phys. 13(1), 3–27 (1945).Google Scholar
  51. Toro, G.D., Han, R., Hirose, T., DePaola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T.: Fault lubrication during earthquakes. Nature 471, 494–498 (2011).Google Scholar
  52. Townend, J.: Drilling, sampling, and monitoring the alpine fault: Deep fault drilling project–alpine fault, New Zealand; Franz Josef, New Zealand, 22–28 March 2009. Eos, Transactions American Geophysical Union 90(36), 312–312 (2009). doi: 10.1029/2009EO360004
  53. Vardoulakis, I., Sulem, J. (eds.): Bifurcation Analysis in Geomechanics. Blankie Acc. and Professional (1995).Google Scholar
  54. Veveakis, E., Alevizos, S., Vardoulakis., I.: Chemical reaction capping of thermal instabilities during shear of frictional faults. J. Mech. Phys. Solids 58, 1175–1194 (2010). doi: 10.1016/j.jmps.2010.06.010.
  55. Veveakis, E., Poulet, T., Alevizos, S.: Thermo-poro-mechanics of chemically active creeping faults. 2: transient considerations. J. Geophys. Res. pp. In Press, 2014. doi: 10.1002/2013JB010071.
  56. Veveakis, E., Stefanou, I., Sulem, J.: Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects. Geotechnique Let. 3(2), 31–36 (2013).Google Scholar
  57. Veveakis, E., Sulem, J., Stefanou, I.: Modeling of fault gouges with cosserat continuum mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. J. Struct. Geology 38, 254–264 (2012). doi: 10.1016/j.jsg.2011.09.012.
  58. Veveakis, E., Vardoulakis, I., DiToro., G.: Thermoporomechanics of creeping landslides: The 1963 vaiont slide, northern Italy. J. Geophys. Res. 112, F03026 (2007). doi: 10.1029/2006JF000702.
  59. Wibberley, C., Shimamoto, T.: Earthquake slip weakening and asperities explained by thermal pressurization. Nature 426(4), 689–692 (2005).Google Scholar
  60. Wibberley, C.A.J., Shimamoto, T.: Internal structure and permeability of major strike-slip fault zones: the median tectonic line in mid prefecture, southwest Japan. J. Struct. Geol. 25, 59–78 (2003).Google Scholar
  61. Yuen, D., Schubert, G.: Asthenospheric shear flow: thermally stable or unstable? Geophys. Res. Lett 4(11), 503–506 (1977).Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CSIRO Earth Science and Resource Engineering and School of Mathematics and StatisticsUniversity of Western Australia, ARRCKensingtonAustralia
  2. 2.School of Earth and EnvironmentUniversity of Western Australia and CSIRO Earth Science and Resource Engineering, ARRCKensingtonAustralia

Personalised recommendations